Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Arch Orthop Trauma Surg ; 144(3): 1161-1169, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253710

ABSTRACT

PURPOSE: Several anterolateral stabilization procedures have been developed recently to address rotational instability of the knee. Currently, these procedures tend to be systematically used by some practitioners. However, antero-lateral structures of the knee (including the anterolateral ligament, ALL) have a self-healing potential which can reduce the need to perform an antero-lateral procedure. In this study, it was hypothesized that early post-traumatic immobilization of the knee with a knee brace would allow partial healing of antero-lateral structures and also allow control of the pivot shift, thus avoiding antero-lateral extra-articular stabilization. The objective of this study was to compare the severity of pivot shift between two groups of patients who all experienced anterior cruciate ligament (ACL) tear and respectively underwent post-traumatic immobilization of the knee versus no immobilization. METHODS: This was a comparative, multicentric (three centers' study) retrospective, consecutive study including 168 patients who underwent ACL reconstruction between May and September 2022. The application or not of post-traumatic immobilization and its duration, the severity of pivot shift observed in the operating room under general anesthesia, the presence of anterolateral lesions as revealed by MRI and the patients' pre-injury sport activity were recorded. RESULTS: A grade 3 pivot shift was found in 44 patients (27%). It was more frequently observed in the group without a brace compared to the group with a knee brace (18 patients out of 36: 50% versus 26 patients out of 132: 19.7%; p = 0.0012). Wearing a brace, whether hinged (OR = 0.221, [0.070-0.652]; p = 0.006) or not (OR = 0.232, [0.076-0.667]; p = 0.0064), was protective from the risk of developing a significant pivot shift. CONCLUSION: This study demonstrated that the presence of pivot-shift was lower in the patients that had an early post-injury knee brace before their ACL reconstruction. Based on this result, systematic brace placement could be advocated for in patients after knee trauma. LEVEL OF EVIDENCE: III, prognostic retrospective case-control study.


Subject(s)
Anterior Cruciate Ligament Injuries , Joint Instability , Humans , Case-Control Studies , Retrospective Studies , Incidence , Range of Motion, Articular , Rotation , Knee Joint/surgery , Anterior Cruciate Ligament Injuries/surgery , Joint Instability/etiology , Joint Instability/prevention & control , Joint Instability/surgery
3.
Nat Immunol ; 24(12): 2121-2134, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37945821

ABSTRACT

The T cell antigen receptor (TCR) contains ten immunoreceptor tyrosine-based activation motif (ITAM) signaling sequences distributed within six CD3 subunits; however, the reason for such structural complexity and multiplicity is unclear. Here we evaluated the effect of inactivating the three CD3ζ chain ITAMs on TCR signaling and T cell effector responses using a conditional 'switch' mouse model. Unexpectedly, we found that T cells expressing TCRs containing inactivated (non-signaling) CD3ζ ITAMs (6F-CD3ζ) exhibited reduced ability to discriminate between low- and high-affinity ligands, resulting in enhanced signaling and cytokine responses to low-affinity ligands because of a previously undetected inhibitory function of CD3ζ ITAMs. Also, 6F-CD3ζ TCRs were refractory to antagonism, as predicted by a new in silico adaptive kinetic proofreading model that revises the role of ITAM multiplicity in TCR signaling. Finally, T cells expressing 6F-CD3ζ displayed enhanced cytolytic activity against solid tumors expressing low-affinity ligands, identifying a new counterintuitive approach to TCR-mediated cancer immunotherapy.


Subject(s)
Immunoreceptor Tyrosine-Based Activation Motif , Receptors, Antigen, T-Cell , Animals , Mice , CD3 Complex , Ligands , Peptides , T-Lymphocytes
4.
Eur J Orthop Surg Traumatol ; 33(8): 3693-3701, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37300590

ABSTRACT

PURPOSE: Osteochondral defects have a limited capacity to heal and can evolve to an early osteoarthritis. A surgical possibility is the replacement of the affected cartilaginous area with a resurfacing device BioPoly™ RS Partial Resurfacing Knee Implant. The aim of this study was to report the clinical and survival outcomes of the BioPoly™ after a minimum follow-up of 4 years. METHODS: This study included all patients who had a BioPoly™ for femoral osteochondral defects greater than 1 cm2 and at least ICRS grade 2. The main outcome was to observe the KOOS and the Tegner activity score were used to assess outcomes preoperatively and at the last follow-up. The secondary outcomes were the VAS for pain, the complications rate post-surgery and survival rate of BioPoly™ at the last FU. RESULTS: Eighteen patients with 44.4% (8/18) of women were included with a mean age of 46.6 years (11.4), a mean body mass index (BMI) of 21.5 (kg/m2) (2.3). The mean follow-up was 6.3 years (1.3). We found a significant difference comparing pre-operative KOOS score and at last follow-up [respectively, 66.56(14.37) vs 84.17(7.656), p < 0.01]. At last follow-up, the Tegner score was different [respectively, 3.05(1.3) vs 3.6(1.3), p < 0.01]. At 5 years, the survival rate was of 94.7%. CONCLUSIONS: BioPoly™ is a real alternative for femoral osteochondral defects greater than 1 cm2 and at least ICRS grade 2. It will be interesting to compare this implant to mosaicplasty technic and/or microfracture at 5 years postoperatively regarding clinical outcomes and survival rate. LEVEL OF EVIDENCE: Therapeutic level III. Prospective cohort study.


Subject(s)
Cartilage Diseases , Cartilage, Articular , Humans , Female , Middle Aged , Cartilage, Articular/surgery , Follow-Up Studies , Prospective Studies , Knee Joint/surgery , Cartilage Diseases/surgery , Treatment Outcome
5.
Development ; 150(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36815628
6.
Elife ; 112022 10 12.
Article in English | MEDLINE | ID: mdl-36223168

ABSTRACT

Living systems exhibit an unmatched complexity, due to countless, entangled interactions across scales. Here, we aim to understand a complex system, that is, segmentation timing in mouse embryos, without a reference to these detailed interactions. To this end, we develop a coarse-grained approach, in which theory guides the experimental identification of the segmentation clock entrainment responses. We demonstrate period- and phase-locking of the segmentation clock across a wide range of entrainment parameters, including higher-order coupling. These quantifications allow to derive the phase response curve (PRC) and Arnold tongues of the segmentation clock, revealing its essential dynamical properties. Our results indicate that the somite segmentation clock has characteristics reminiscent of a highly non-linear oscillator close to an infinite period bifurcation and suggests the presence of long-term feedbacks. Combined, this coarse-grained theoretical-experimental approach reveals how we can derive simple, essential features of a highly complex dynamical system, providing precise experimental control over the pace and rhythm of the somite segmentation clock.


Subject(s)
Somites , Tongue , Animals , Mice
7.
Elife ; 112022 Sep 30.
Article in English | MEDLINE | ID: mdl-36178345

ABSTRACT

Cell size is controlled to be within a specific range to support physiological function. To control their size, cells use diverse mechanisms ranging from 'sizers', in which differences in cell size are compensated for in a single cell division cycle, to 'adders', in which a constant amount of cell growth occurs in each cell cycle. This diversity raises the question why a particular cell would implement one rather than another mechanism? To address this question, we performed a series of simulations evolving cell size control networks. The size control mechanism that evolved was influenced by both cell cycle structure and specific selection pressures. Moreover, evolved networks recapitulated known size control properties of naturally occurring networks. If the mechanism is based on a G1 size control and an S/G2/M timer, as found for budding yeast and some human cells, adders likely evolve. But, if the G1 phase is significantly longer than the S/G2/M phase, as is often the case in mammalian cells in vivo, sizers become more likely. Sizers also evolve when the cell cycle structure is inverted so that G1 is a timer, while S/G2/M performs size control, as is the case for the fission yeast S. pombe. For some size control networks, cell size consistently decreases in each cycle until a burst of cell cycle inhibitor drives an extended G1 phase much like the cell division cycle of the green algae Chlamydomonas. That these size control networks evolved such self-organized criticality shows how the evolution of complex systems can drive the emergence of critical processes.


Subject(s)
Models, Biological , Schizosaccharomyces , Animals , Humans , Cell Cycle/physiology , Cell Division , Cell Size , Mammals
8.
Nanoscale ; 14(24): 8691-8708, 2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35673929

ABSTRACT

The extracellular matrix (ECM) of articular cartilage is a three-dimensional network mainly constituted of entangled collagen fibrils and interfibrillar aggrecan aggregates. During the development of osteoarthritis (OA), the most common musculoskeletal disorder, the ECM is subjected to a combination of chemical and structural changes that play a pivotal role in the initiation and the progress of the disease. While the molecular mechanisms involved in the pathological remodelling of the ECM are considered as decisive, they remain, however, not completely elucidated. Herein, we report a relevant way for unravelling the role and nature of OA progress on human cartilage tissues, in terms of chemical composition and morphological and mechanical properties at the level of supramolecular assemblies constituting the cartilage ECM. For this purpose, we used X-ray photoelectron spectroscopy (XPS), and developed an innovative methodological approach that provides the molecular composition of the ECM. Moreover, we used atomic force microscopy (AFM) to probe the tissues at the level of individual collagen fibrils, both imaging and force spectroscopy modes being explored to this end. Taken together, these nanoscale characterization studies reveal the existence of two stages in the OA progress. At the early stage, a marked increase in the aggrecan and collagen content is observed, reflecting the homeostatic chondrocyte activity that tends to repair the cartilage ECM. At the late stage, we observe a failed attempt to stabilize and/or restore the tissue, yielding significant degradation of the supramolecular assemblies. This suggests an imbalance in the chondrocyte activity that turns in favor of catabolic events. Chemical changes are also accompanied by ECM structural changes and stiffening. Interestingly, we showed the possibility to mimic the imbalanced activities of chondrocytes by applying enzymatic digestions of healthy cartilage, through the combined action of hyaluronidase and collagenase. This yields damage strictly analogous to that observed at high OA severity. These findings bring mechanistic insights leading to a better understanding of the mechanism by which OA is initiated and progresses in the cartilage ECM. They offer guidelines for the development of curative treatments, such as targeting the homeostatic balance of chondrocyte metabolism through the control of enzymatic reactions involved in catabolic processes.


Subject(s)
Cartilage, Articular , Osteoarthritis , Aggrecans/metabolism , Cartilage, Articular/pathology , Chondrocytes , Collagen/metabolism , Extracellular Matrix/metabolism , Humans , Osteoarthritis/pathology
9.
Proc Natl Acad Sci U S A ; 119(26): e2113651119, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35737842

ABSTRACT

The high-dimensional character of most biological systems presents genuine challenges for modeling and prediction. Here we propose a neural network-based approach for dimensionality reduction and analysis of biological gene expression data, using, as a case study, a well-known genetic network in the early Drosophila embryo, the gap gene patterning system. We build an autoencoder compressing the dynamics of spatial gap gene expression into a two-dimensional (2D) latent map. The resulting 2D dynamics suggests an almost linear model, with a small bare set of essential interactions. Maternally defined spatial modes control gap genes positioning, without the classically assumed intricate set of repressive gap gene interactions. This, surprisingly, predicts minimal changes of neighboring gap domains when knocking out gap genes, consistent with previous observations. Latent space geometries in maternal mutants are also consistent with the existence of such spatial modes. Finally, we show how positional information is well defined and interpretable as a polar angle in latent space. Our work illustrates how optimization of small neural networks on medium-sized biological datasets is sufficiently informative to capture essential underlying mechanisms of network function.


Subject(s)
Drosophila Proteins , Gene Regulatory Networks , Neural Networks, Computer , Animals , Drosophila/embryology , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Models, Genetic
10.
Science ; 376(6595): 880-884, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35587980

ABSTRACT

Systems immunology lacks a framework with which to derive theoretical understanding from high-dimensional datasets. We combined a robotic platform with machine learning to experimentally measure and theoretically model CD8+ T cell activation. High-dimensional cytokine dynamics could be compressed onto a low-dimensional latent space in an antigen-specific manner (so-called "antigen encoding"). We used antigen encoding to model and reconstruct patterns of T cell immune activation. The model delineated six classes of antigens eliciting distinct T cell responses. We generalized antigen encoding to multiple immune settings, including drug perturbations and activation of chimeric antigen receptor T cells. Such universal antigen encoding for T cell activation may enable further modeling of immune responses and their rational manipulation to optimize immunotherapies.


Subject(s)
Antigens , CD8-Positive T-Lymphocytes , Cytokines , Lymphocyte Activation , Models, Immunological , Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , Humans , Immunotherapy , Machine Learning , Receptors, Antigen, T-Cell/metabolism
11.
Front Immunol ; 13: 842538, 2022.
Article in English | MEDLINE | ID: mdl-35479080

ABSTRACT

Introduction: Osteoarthritis (OA) is a whole-joint disease characterized by a low-grade inflammation that is involved in both cartilage degradation and subchondral bone remodeling. Since subchondral bone has a cholinergic innervation and that acetylcholine (Ach) might have an anti-inflammatory effect through the α7 nicotinic Ach receptor (α7nAchR), we aimed (i) to determine the expression of non-neuronal cholinergic system and nicotinic receptor subunits by murine and human osteoblasts, (ii) to address the role of α7nAchR in osteoblastic response to inflammation, and (iii) to study the role of α7nAchR in a spontaneous aging OA model. Methods: Primary cultures of WT and α7nAchR knock-out mice (Chrna7-/-) murine osteoblasts and of subchondral bone human OA osteoblasts were performed. The expressions of the non-neuronal cholinergic system and of the nAchR subunits were assessed by PCR. In vitro, IL1ß-stimulated WT, Chrna7-/-, and human osteoblasts were pretreated with nicotine. At 24 h, expressions of interleukin-6 (IL6) and metalloproteinase-3 and -13 (MMP), RANK-ligand (RANKL), and osteoprotegerin (OPG) were quantified by qPCR and ELISA. Spontaneous aging OA was evaluated and compared between male WT and Chrna7-/- mice of 9 and 12 months. Results: Murine WT osteoblasts express the main components of the cholinergic system and α7 subunit composing α7nAchR. Nicotine partially prevented the IL1ß-induced expression and production of IL6, MMP3, and RANKL in WT osteoblasts. The effect for IL6 and MMP was mediated by α7nAchR since nicotine had no effect on Chrna7-/- osteoblasts while the RANKL decrease persisted. Chrna7-/- mice displayed significantly higher cartilage lesions than their WT counterparts at 9 and 12 months, without difference in subchondral bone remodeling. Human OA osteoblasts also expressed the non-neuronal cholinergic system and α7 subunit as well as CHRFAM7A, the dominant negative duplicate of Chrna7. Nicotine pretreatment did not significantly reduce IL6 and MMP3 production in IL-1ß-stimulated human osteoarthritic osteoblasts (n = 4), possibly due to CHRFAM7A. Conclusion: Cholinergic system counteracts murine osteoblastic response to IL-1ß through α7nAchR. Since α7nAchR deletion may limit cartilage degradation during murine age-related OA, enhancing cholinergic system could be a new therapeutic target in OA but may depend on CHRFAM7A expression.


Subject(s)
Osteoarthritis , Receptors, Nicotinic , Animals , Cholinergic Agents , Inflammation , Interleukin-6/metabolism , Male , Matrix Metalloproteinase 3/metabolism , Mice , Nicotine/pharmacology , Osteoarthritis/metabolism , RANK Ligand/metabolism , Receptors, Nicotinic/genetics , alpha7 Nicotinic Acetylcholine Receptor/genetics
12.
JBJS Case Connect ; 12(1)2022 01 12.
Article in English | MEDLINE | ID: mdl-35020690

ABSTRACT

CASE: We report 2 cases of undescribed lateral unicompartmental knee arthroplasty failure: a 180° rotation of the femoral component. The patients experienced a locking event several years after arthroplasty, and radiographs revealed a perfect 180° rotation of the implant. Each patient underwent revision surgery to a total knee arthroplasty. At the 13-year follow-up, the first patient had no pain and a range of motion of 140°. The second patient, at 3 months, could walk without crutches with a flexion at 145°. CONCLUSION: Excessive laxity, coronal or sagittal, might be associated with this complication.


Subject(s)
Arthroplasty, Replacement, Knee , Knee Prosthesis , Arthroplasty, Replacement, Knee/adverse effects , Humans , Radiography , Range of Motion, Articular , Reoperation
13.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Article in English | MEDLINE | ID: mdl-34887356

ABSTRACT

Membrane invagination and vesicle formation are key steps in endocytosis and cellular trafficking. Here, we show that endocytic coat proteins with prion-like domains (PLDs) form hemispherical puncta in the budding yeast, Saccharomyces cerevisiae These puncta have the hallmarks of biomolecular condensates and organize proteins at the membrane for actin-dependent endocytosis. They also enable membrane remodeling to drive actin-independent endocytosis. The puncta, which we refer to as endocytic condensates, form and dissolve reversibly in response to changes in temperature and solution conditions. We find that endocytic condensates are organized around dynamic protein-protein interaction networks, which involve interactions among PLDs with high glutamine contents. The endocytic coat protein Sla1 is at the hub of the protein-protein interaction network. Using active rheology, we inferred the material properties of endocytic condensates. These experiments show that endocytic condensates are akin to viscoelastic materials. We use these characterizations to estimate the interfacial tension between endocytic condensates and their surroundings. We then adapt the physics of contact mechanics, specifically modifications of Hertz theory, to develop a quantitative framework for describing how interfacial tensions among condensates, the membrane, and the cytosol can deform the plasma membrane to enable actin-independent endocytosis.


Subject(s)
Cytoskeletal Proteins/metabolism , Endocytosis/physiology , Prions/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Cell Membrane , Cytoskeletal Proteins/genetics , Cytosol/physiology , Gene Expression Regulation, Fungal , Glutamine/chemistry , Mechanotransduction, Cellular , Protein Conformation , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/genetics , Viscoelastic Substances
14.
Cell Rep ; 37(9): 110064, 2021 11 30.
Article in English | MEDLINE | ID: mdl-34852223

ABSTRACT

CD4+ T cells have a remarkable potential to differentiate into diverse effector lineages following activation. Here, we probe the heterogeneity present among naive CD4+ T cells before encountering their cognate antigen to ask whether their effector potential is modulated by pre-existing transcriptional and chromatin landscape differences. Single-cell RNA sequencing shows that key drivers of variability are genes involved in T cell receptor (TCR) signaling. Using CD5 expression as a readout of the strength of tonic TCR interactions with self-peptide MHC, and sorting on the ends of this self-reactivity spectrum, we find that pre-existing transcriptional differences among naive CD4+ T cells impact follicular helper T (TFH) cell versus non-TFH effector lineage choice. Moreover, our data implicate TCR signal strength during thymic development in establishing differences in naive CD4+ T cell chromatin landscapes that ultimately shape their effector potential.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cell Differentiation , Chromatin/physiology , Lymphocyte Activation/immunology , Lymphocytic Choriomeningitis/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , CD4-Positive T-Lymphocytes/metabolism , Female , Gene Expression Profiling , Lymphocytic Choriomeningitis/genetics , Lymphocytic Choriomeningitis/metabolism , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/immunology , Male , Mice, Inbred C57BL , Receptors, Antigen, T-Cell/metabolism
15.
Elife ; 92020 08 10.
Article in English | MEDLINE | ID: mdl-32773041

ABSTRACT

During development, cells gradually assume specialized fates via changes of transcriptional dynamics, sometimes even within the same developmental stage. For anterior-posterior (AP) patterning in metazoans, it has been suggested that the gradual transition from a dynamic genetic regime to a static one is encoded by different transcriptional modules. In that case, the static regime has an essential role in pattern formation in addition to its maintenance function. In this work, we introduce a geometric approach to study such transition. We exhibit two types of genetic regime transitions arising through local or global bifurcations, respectively. We find that the global bifurcation type is more generic, more robust, and better preserves dynamical information. This could parsimoniously explain common features of metazoan segmentation, such as changes of periods leading to waves of gene expressions, 'speed/frequency-gradient' dynamics, and changes of wave patterns. Geometric approaches appear as possible alternatives to gene regulatory networks to understand development.


Subject(s)
Body Patterning/genetics , Animals , Biological Evolution , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Models, Theoretical
16.
Biophys J ; 118(6): 1455-1465, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32070477

ABSTRACT

Physical models of biological systems can become difficult to interpret when they have a large number of parameters. But the models themselves actually depend on (i.e., are sensitive to) only a subset of those parameters. This phenomenon is due to parameter space compression (PSC), in which a subset of parameters emerges as "stiff" as a function of time or space. PSC has only been used to explain analytically solvable physics models. We have generalized this result by developing a numerical approach to PSC that can be applied to any computational model. We validated our method against analytically solvable models of a random walk with drift and protein production and degradation. We then applied our method to a simple computational model of microtubule dynamic instability. We propose that numerical PSC has the potential to identify the low-dimensional structure of many computational models in biophysics. The low-dimensional structure of a model is easier to interpret and identifies the mechanisms and experiments that best characterize the system.


Subject(s)
Models, Theoretical , Proteins , Biophysics , Models, Biological , Physical Phenomena
17.
Curr Biol ; 29(22): 3825-3837.e3, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31679937

ABSTRACT

Separation of duplicated spindle poles is the first step in forming the mitotic spindle. Kinesin-5 crosslinks and slides anti-parallel microtubules (MTs), but it is unclear how these two activities contribute to the first steps in spindle formation. In this study, we report that in monopolar spindles, the duplicated spindle poles snap apart in a fast and irreversible step that produces a nascent bipolar spindle. Using mutations in Kinesin-5 that inhibit microtubule sliding, we show that the fast, irreversible pole separation is primarily driven by microtubule crosslinking. Electron tomography revealed microtubule pairs in monopolar spindles have short overlaps that intersect at high angles and are unsuited for ensemble Kinesin-5 sliding. However, maximal extension of a subset of anti-parallel microtubule pairs approaches the length of nascent bipolar spindles and is consistent with a Kinesin-5 crosslinking-driven transition. Nonetheless, microtubule sliding by Kinesin-5 contributes to stabilizing the nascent spindle and setting its stereotyped equilibrium length.


Subject(s)
Kinesins/genetics , Kinesins/metabolism , Spindle Apparatus/physiology , Cell Cycle/genetics , Microtubules/metabolism , Microtubules/physiology , Mitosis/physiology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Spindle Apparatus/genetics , Spindle Apparatus/metabolism , Spindle Poles/genetics , Spindle Poles/physiology
18.
ACS Nano ; 13(10): 11955-11966, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31513377

ABSTRACT

Super-resolution fluorescence imaging based on localization microscopy requires tuning the photoblinking properties of fluorescent dyes employed. Missing is a rapid way to analyze the blinking rates of the fluorophore probes. Herein we present an ensemble autocorrelation technique for rapidly and simultaneously measuring photoblinking and bleaching rate constants from a microscopy image time series of fluorescent probes that is significantly faster than individual single-molecule trajectory analysis approaches. Our method is accurate for probe densities typically encountered in single-molecule studies as well as for higher density systems which cannot be analyzed by standard single-molecule techniques. We also show that we can resolve characteristic blinking times that are faster than camera detector exposure times, which cannot be accessed by threshold-based single-molecule approaches due to aliasing. We confirm this through computer simulation and single-molecule imaging data of DNA-Cy5 complexes. Finally, we demonstrate that with sufficient sampling our technique can accurately recover rates from stochastic optical reconstruction microscopy super-resolution data.

19.
J Phys Chem B ; 123(10): 2235-2243, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30779571

ABSTRACT

Numerous biological systems are known to harbor a form of logarithmic behavior, from Weber's law to bacterial chemotaxis. Such a log-response allows for sensitivity to small relative variations of biochemical inputs over a large range of concentration values. Here we use a genetic algorithm to evolve biochemical networks displaying a logarithmic response. A quasi-perfect log-response implemented by the same core network evolves in a convergent way across our different in silico replications. The best network is able to fit a logarithm over 4 orders of magnitude with an accuracy of the order of 1%. At the heart of this network, we show that a logarithmic approximation may be implemented with one single nonlinear interaction, that can be interpreted either as multisite phosphorylations or as a ligand induced multimerization. We provide an analytical explanation for the effect and exhibit constraints on parameters. Biological log-response might thus be easier to implement than usually assumed.


Subject(s)
Computer Simulation , Models, Biological , Models, Chemical , Algorithms , Biochemical Phenomena
20.
Arthritis Res Ther ; 21(1): 18, 2019 01 11.
Article in English | MEDLINE | ID: mdl-30635030

ABSTRACT

BACKGROUND: Accumulation of advanced glycation end-products (AGEs) is involved in age-related osteoarthritis (OA). Glyoxalase (Glo)-1 is the main enzyme involved in the removal of AGE precursors, especially carboxymethyl-lysine (CML). We aimed to investigate the expression of several AGEs and Glo-1 in human OA cartilage and to study chondrocytic Glo-1 regulation by inflammation, mediated by interleukin (IL)-1ß. METHODS: Ex vivo, we quantified AGEs (pentosidine, CML, methylglyoxal-hydroimidazolone-1) in knee cartilage from 30 OA patients. Explants were also incubated with and without IL-1ß, and we assessed Glo-1 protein expression and enzymatic activity. In vitro, primary cultured murine chondrocytes were stimulated with increasing concentrations of IL-1ß to assess Glo-1 enzymatic activity and expression. To investigate the role of oxidative stress in the IL-1ß effect, cells were also treated with inhibitors of mitochondrial oxidative stress or nitric oxide synthase. RESULTS: Ex vivo, only the human cartilage CML content was correlated with patient age (r = 0.78, p = 0.0031). No statistically significant correlation was found between Glo-1 protein expression and enzymatic activity in human cartilage and patient age. We observed that cartilage explant stimulation with IL-1ß decreased Glo-1 protein expression and enzymatic activity. In vitro, we observed a dose-dependent decrease in Glo-1 mRNA, protein quantity, and enzymatic activity in response to IL-1ß in murine chondrocytes. Inhibitors of oxidative stress blunted this downregulation. CONCLUSION: Glo-1 is impaired by inflammation mediated by IL-1ß in chondrocytes through oxidative stress pathways and may explain age-dependent accumulation of the AGE CML in OA cartilage.


Subject(s)
Aging/metabolism , Glycation End Products, Advanced/metabolism , Inflammation Mediators/metabolism , Lactoylglutathione Lyase/biosynthesis , Osteoarthritis/metabolism , Age Factors , Aged , Aged, 80 and over , Aging/pathology , Animals , Cells, Cultured , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Osteoarthritis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...