Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Sel Evol ; 55(1): 39, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37308823

ABSTRACT

BACKGROUND: Selective breeding is a promising solution to reduce the vulnerability of fish farms to heat waves, which are predicted to increase in intensity and frequency. However, limited information about the genetic architecture of acute hyperthermia resistance in fish is available. Two batches of sibs from a rainbow trout commercial line were produced: the first (N = 1382) was phenotyped for acute hyperthermia resistance at nine months of age and the second (N = 1506) was phenotyped for main production traits (growth, body length, muscle fat content and carcass yield) at 20 months of age. Fish were genotyped on a 57 K single nucleotide polymorphism (SNP) array and their genotypes were imputed to high-density based on the parent's genotypes from a 665 K SNP array. RESULTS: The heritability estimate of resistance to acute hyperthermia was 0.29 ± 0.05, confirming the potential of selective breeding for this trait. Since genetic correlations of acute hyperthermia resistance with the main production traits near harvest age were all close to zero, selecting for acute hyperthermia resistance should not impact the main production traits, and vice-versa. A genome-wide association study revealed that resistance to acute hyperthermia is a highly polygenic trait, with six quantitative trait loci (QTL) detected, but explaining less than 5% of the genetic variance. Two of these QTL, including the most significant one, may explain differences in acute hyperthermia resistance across INRAE isogenic lines of rainbow trout. Differences in mean acute hyperthermia resistance phenotypes between homozygotes at the most significant SNP was 69% of the phenotypic standard deviation, showing promising potential for marker-assisted selection. We identified 89 candidate genes within the QTL regions, among which the most convincing functional candidates are dnajc7, hsp70b, nkiras2, cdk12, phb, fkbp10, ddx5, cygb1, enpp7, pdhx and acly. CONCLUSIONS: This study provides valuable insight into the genetic architecture of acute hyperthermia resistance in juvenile rainbow trout. We show that the selection potential for this trait is substantial and selection for this trait should not be too detrimental to improvement of other traits of interest. Identified functional candidate genes provide new knowledge on the physiological mechanisms involved in acute hyperthermia resistance, such as protein chaperoning, oxidative stress response, homeostasis maintenance and cell survival.


Subject(s)
Hyperthermia, Induced , Oncorhynchus mykiss , Animals , Genome-Wide Association Study , Phenotype , Genotype
2.
Genet Sel Evol ; 55(1): 30, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37143017

ABSTRACT

BACKGROUND: Viral nervous necrosis (VNN) is a major disease that affects European sea bass, and understanding the biological mechanisms that underlie VNN resistance is important for the welfare of farmed fish and sustainability of production systems. The aim of this study was to identify genomic regions and genes that are associated with VNN resistance in sea bass. RESULTS: We generated a dataset of 838,451 single nucleotide polymorphisms (SNPs) identified from whole-genome sequencing (WGS) in the parental generation of two commercial populations (A: 2371 individuals and B: 3428 individuals) of European sea bass with phenotypic records for binary survival in a VNN challenge. For each population, three cohorts were submitted to a red-spotted grouper nervous necrosis virus (RGNNV) challenge by immersion and genotyped on a 57K SNP chip. After imputation of WGS SNPs from their parents, quantitative trait loci (QTL) were mapped using a Bayesian sparse linear mixed model (BSLMM). We found several QTL regions that were specific to one of the populations on different linkage groups (LG), and one 127-kb QTL region on LG12 that was shared by both populations and included the genes ZDHHC14, which encodes a palmitoyltransferase, and IFI6/IFI27-like, which encodes an interferon-alpha induced protein. The most significant SNP in this QTL region was only 1.9 kb downstream of the coding sequence of the IFI6/IFI27-like gene. An unrelated population of four large families was used to validate the effect of the QTL. Survival rates of susceptible genotypes were 40.6% and 45.4% in populations A and B, respectively, while that of the resistant genotype was 66.2% in population B and 78% in population A. CONCLUSIONS: We have identified a genomic region that carries a major QTL for resistance to VNN and includes the ZDHHC14 and IFI6/IFI27-like genes. The potential involvement of the interferon pathway, a well-known anti-viral defense mechanism in several organisms (chicken, human, or fish), in survival to VNN infection is of particular interest. Our results can lead to major improvements for sea bass breeding programs through marker-assisted genomic selection to obtain more resistant fish.


Subject(s)
Bass , Fish Diseases , Animals , Humans , Bass/genetics , Interferons/genetics , Bayes Theorem , Quantitative Trait Loci , Necrosis/genetics , Fish Diseases/genetics , Mitochondrial Proteins/genetics , Membrane Proteins/genetics
4.
Front Genet ; 12: 665920, 2021.
Article in English | MEDLINE | ID: mdl-34335683

ABSTRACT

Disease outbreaks are a major threat to the aquaculture industry, and can be controlled by selective breeding. With the development of high-throughput genotyping technologies, genomic selection may become accessible even in minor species. Training population size and marker density are among the main drivers of the prediction accuracy, which both have a high impact on the cost of genomic selection. In this study, we assessed the impact of training population size as well as marker density on the prediction accuracy of disease resistance traits in European sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata). We performed a challenge to nervous necrosis virus (NNV) in two sea bass cohorts, a challenge to Vibrio harveyi in one sea bass cohort and a challenge to Photobacterium damselae subsp. piscicida in one sea bream cohort. Challenged individuals were genotyped on 57K-60K SNP chips. Markers were sampled to design virtual SNP chips of 1K, 3K, 6K, and 10K markers. Similarly, challenged individuals were randomly sampled to vary training population size from 50 to 800 individuals. The accuracy of genomic-based (GBLUP model) and pedigree-based estimated breeding values (EBV) (PBLUP model) was computed for each training population size using Monte-Carlo cross-validation. Genomic-based breeding values were also computed using the virtual chips to study the effect of marker density. For resistance to Viral Nervous Necrosis (VNN), as one major QTL was detected, the opportunity of marker-assisted selection was investigated by adding a QTL effect in both genomic and pedigree prediction models. As training population size increased, accuracy increased to reach values in range of 0.51-0.65 for full density chips. The accuracy could still increase with more individuals in the training population as the accuracy plateau was not reached. When using only the 6K density chip, accuracy reached at least 90% of that obtained with the full density chip. Adding the QTL effect increased the accuracy of the PBLUP model to values higher than the GBLUP model without the QTL effect. This work sets a framework for the practical implementation of genomic selection to improve the resistance to major diseases in European sea bass and gilthead sea bream.

5.
Genet Sel Evol ; 49(1): 38, 2017 04 19.
Article in English | MEDLINE | ID: mdl-28424047

ABSTRACT

BACKGROUND: The aim of this study was to analyse the mechanisms that underlie phenotypic quantitative trait loci (QTL) in overfed mule ducks by identifying co-localized proteomic QTL (pQTL). The QTL design consisted of three families of common ducks that were progeny-tested by using 294 male mule ducks. This population of common ducks was genotyped using a genetic map that included 334 genetic markers located across 28 APL chromosomes (APL for Anas platyrhynchos). Mule ducks were phenotyped for 49 traits related to growth, metabolism, overfeeding ability and meat and fatty liver quality, and 326 soluble fatty liver proteins were quantified. RESULTS: One hundred and seventy-six pQTL and 80 phenotypic QTL were detected at the 5% chromosome-wide significance threshold. The great majority of the identified pQTL were trans-acting and localized on a chromosome other than that carrying the coding gene. The most significant pQTL (1% genome-wide significance) were found for alpha-enolase on APL18 and fatty acid synthase on APL24. Some proteins were associated with numerous pQTL (for example, 17 and 14 pQTL were detected for alpha-enolase and apolipoprotein A1, respectively) and pQTL hotspots were observed on some chromosomes (APL18, 24, 25 and 29). We detected 66 co-localized phenotypic QTL and pQTL for which the significance of the two-trait QTL (2t-QTL) analysis was higher than that of the strongest QTL using a single-trait approach. Among these, 16 2t-QTL were pleiotropic. For example, on APL15, melting rate and abundance of two alpha-enolase spots appeared to be impacted by a single locus that is involved in the glycolytic process. On APLZ, we identified a pleiotropic QTL that modified both the blood level of glucose at the beginning of the force-feeding period and the concentration of glutamate dehydrogenase, which, in humans, is involved in increased glucose absorption by the liver when the glutamate dehydrogenase 1 gene is mutated. CONCLUSIONS: We identified pleiotropic loci that affect metabolic pathways linked to glycolysis or lipogenesis, and in the end to fatty liver quality. Further investigation, via transcriptomics and metabolomics approaches, is required to confirm the biomarkers that were found to impact the genetic variability of these phenotypic traits.


Subject(s)
Ducks/genetics , Genetic Variation , Lipogenesis , Liver/metabolism , Poultry Products/standards , Quantitative Trait Loci , Quantitative Trait, Heritable , Animals , Ducks/metabolism , Female , Genetic Pleiotropy , Glycolysis , Male
6.
J Agric Food Chem ; 62(29): 7140-50, 2014 Jul 23.
Article in English | MEDLINE | ID: mdl-24976256

ABSTRACT

This study aimed at identifying the mechanisms implicated in "foie gras" quality variability through the study of the relationships between liver protein compositions and four liver quality phenotypes: liver weight, melting rate, and protein contents on crude or dry matter. Spots of soluble proteins were separated by bidimensional electrophoresis, and the relative abundance of proteins according to quality traits values was investigated. Twenty-three protein spots (19 unique identified proteins) showed different levels of abundance according to one or more of the traits' values. These abundance differences highlighted two groups of livers with opposite trends of abundance levels. Proteins of the first group, associated with low liver weight and melting rate, are involved in synthesis and anabolism processes, whereas proteins of the second group, associated with high liver weight and melting rate, are proteins involved in stress response. Altogether, these results highlight the variations in metabolic states underlying foie gras quality traits.


Subject(s)
Liver/metabolism , Proteomics , Animals , Ducks , Electrophoresis, Gel, Two-Dimensional , Liver/anatomy & histology , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...