Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 5: e1391, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25165877

ABSTRACT

Accumulating evidence indicates that loss of physiologic amyloid precursor protein (APP) function leads to reduced neuronal plasticity, diminished synaptic signaling and enhanced susceptibility of neurons to cellular stress during brain aging. Here we investigated the neuroprotective function of the soluble APP ectodomain sAPPα (soluble APPα), which is generated by cleavage of APP by α-secretase along the non-amyloidogenic pathway. Recombinant sAPPα protected primary hippocampal neurons and SH-SY5Y neuroblastoma cells from cell death induced by trophic factor deprivation. We show that this protective effect is abrogated in neurons from APP-knockout animals and APP-depleted SH-SY5Y cells, but not in APP-like protein 1- and 2- (APLP1 and APLP2) depleted cells, indicating that expression of membrane-bound holo-APP is required for sAPPα-dependent neuroprotection. Trophic factor deprivation diminished the activity of the Akt survival pathway. Strikingly, both recombinant sAPPα and the APP-E1 domain were able to stimulate Akt activity in wild-type (wt) fibroblasts, SH-SY5Y cells and neurons, but failed to rescue in APP-deficient neurons or fibroblasts. The ADAM10 (a disintegrin and metalloproteinase domain-containing protein 10) inhibitor GI254023X exacerbated neuron death in organotypic (hippocampal) slice cultures of wt mice subjected to trophic factor and glucose deprivation. This cell death-enhancing effect of GI254023X could be completely rescued by applying exogenous sAPPα. Interestingly, sAPPα-dependent Akt induction was unaffected in neurons of APP-ΔCT15 mice that lack the C-terminal YENPTY motif of the APP intracellular region. In contrast, sAPPα-dependent rescue of Akt activation was completely abolished in APP mutant cells lacking the G-protein interaction motif located in the APP C-terminus and by blocking G-protein-dependent signaling with pertussis toxin. Collectively, our data provide new mechanistic insights into the physiologic role of APP in antagonizing neurotoxic stress: they suggest that cell surface APP mediates sAPPα-induced neuroprotection via G-protein-coupled activation of the Akt pathway.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Proto-Oncogene Proteins c-akt/metabolism , ADAM Proteins/antagonists & inhibitors , ADAM Proteins/metabolism , ADAM10 Protein , Amino Acid Motifs , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/deficiency , Amyloid beta-Protein Precursor/genetics , Animals , Cell Line , Cell Survival/drug effects , Dipeptides/pharmacology , Hippocampus/metabolism , Hippocampus/pathology , Humans , Hydroxamic Acids/pharmacology , In Vitro Techniques , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Pertussis Toxin/toxicity , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Signal Transduction/drug effects
2.
Biomed Pharmacother ; 64(8): 576-8, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20630696

ABSTRACT

The treatment of cancer by antisense anti-IGF-I cellular therapy inducing immune response has evoked interest among many promising strategies. Here, we reported some results obtained from patients with cancer, mainly glioblastoma treated by this strategy, which was also extended to patients with colon carcinoma, ovary cystadenocarcinoma and prostate adenocarcinoma. It was shown that, in the phase I of clinical trial, patients vaccinated with their own tumour cells treated by antisense IGF-I presented a slight increase of temperature. Their peripheral blood lymphocytes showed a shift in the percentage of CD8 effector cells as judged by expression of cell surface markers CD8+ CD28+. Particularly, in two treated patients with glioblastoma, the survival time was 19 and 24 months respectively in comparison to the range of 12 to 15 months observed in the case of classical treatment such as surgery, radiation or chemotherapy. These results, although preliminary, gave indication that the reported strategy could deserve consideration owing to its safety. Furthermore, the increase in the percentage of peripheral blood monomorphonucleated cells (PBMNCs) with effector phenotype, i.e., CD8+ CD28+ in vaccinated patients might explain their prolonged survival time.


Subject(s)
Cancer Vaccines/therapeutic use , Insulin-Like Growth Factor I/genetics , Neoplasms/therapy , RNA, Antisense/genetics , Tumor Cells, Cultured , CD11b Antigen/blood , CD11b Antigen/immunology , CD28 Antigens/blood , CD28 Antigens/immunology , CD8 Antigens/blood , CD8 Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/administration & dosage , Disease-Free Survival , Humans , Leukocytes, Mononuclear/immunology , Neoplasms/immunology , Neoplasms/mortality , Transfection , Tumor Cells, Cultured/metabolism , Tumor Cells, Cultured/radiation effects , Tumor Cells, Cultured/transplantation
3.
Phys Rev B Condens Matter ; 35(8): 3760-3764, 1987 Mar 15.
Article in English | MEDLINE | ID: mdl-9941896
SELECTION OF CITATIONS
SEARCH DETAIL
...