Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-20182493

ABSTRACT

Understanding the immune responses elicited by SARS-CoV-2 infection is critical in terms of protection from re-infection and, thus, for public health policy and for vaccine development against the COVID-19. Here, using either live SARS-CoV-2 particles or retroviruses pseudotyped with the SARS-CoV-2 S viral surface protein (Spike), we studied the neutralizing antibody (nAb) response in serum specimens from a cohort of 140 SARS-CoV-2 qPCR-confirmed patients, including patient with mild symptoms but also more severe form including those that require intensive care. We show that nAb titers were strongly correlated with disease severity and with anti-Spike IgG levels. Indeed, patients from intensive care units exhibited high nAb titers, whereas patients with milder disease symptoms displayed heterogenous nAb titers and asymptomatic or exclusive outpatient care patients had no or poor nAb levels. We found that the nAb activity in SARS-CoV-2-infected patients displayed a relatively rapid decline after recovery, as compared to individuals infected with alternative coronaviruses. We show the absence of cross-neutralization between endemic coronaviruses and SARS-CoV-2, indicating that previous infection by human coronaviruses may not generate protective nAb against SARS-CoV-2 infection. Finally, we found that the D614G mutation in the Spike protein, which has recently been identified as the major variant now found in Europe, does not allow neutralization escape. Altogether, our results contribute to the understanding of the immune correlate of SARS-CoV-2 induced disease and claim for a rapid evaluation of the role of the humoral response in the pathogenesis of SARS-CoV-2.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-260901

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a {beta}-coronavirus, is the causative agent of the COVID-19 pandemic. Like for other coronaviruses, its particles are composed of four structural proteins, namely Spike S, Envelope E, Membrane M and Nucleoprotein N proteins. The involvement of each of these proteins and their interplays during the assembly process of this new virus are poorly-defined and are likely {beta}-coronavirus-type different. Therefore, we sought to investigate how SARS-CoV-2 behaves for its assembly by expression assays of S, in combination with E, M and/or N. By combining biochemical and imaging assays, we showed that E and M regulate intracellular trafficking of S and hence its furin-mediated processing. Indeed, our imaging data revealed that S remains at ERGIC or Golgi compartments upon expression of E or M, like for SARS-CoV-2 infected cells. By studying a mutant of S, we showed that its cytoplasmic tail, and more specifically, its C-terminal retrieval motif, is required for the M-mediated retention in the ERGIC, whereas E induces S retention by modulating the cell secretory pathway. We also highlighted that E and M induce a specific maturation of S N-glycosylation, which is observed on particles and lysates from infected cells independently of its mechanisms of intracellular retention. Finally, we showed that both M, E and N are required for optimal production of virus-like-proteins. Altogether, our results indicated that E and M proteins influence the properties of S proteins to promote assembly of viral particles. Our results therefore highlight both similarities and dissimilarities in these events, as compared to other {beta}-coronaviruses. Author SummaryThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the COVID-19 pandemic. Its viral particles are composed of four structural proteins, namely Spike S, Envelope E, Membrane M and Nucleoprotein N proteins, though their involvement in the virion assembly remain unknown for this particular coronavirus. Here we showed that presence of E and M influence the localization and maturation of S protein, in term of cleavage and N-glycosylation maturation. Indeed, E protein is able to slow down the cell secretory pathway whereas M-induced retention of S requires the retrieval motif in S C-terminus. We also highlighted that E and M might regulate the N glycosylation maturation of S independently of its intracellular retention mechanism. Finally, we showed that the four structural proteins are required for optimal formation of virus-like particles, highlighting the involvement of N, E and M in assembly of infectious particles. Altogether, our results highlight both similarities and dissimilarities in these events, as compared to other {beta}-coronaviruses.

3.
Korean Circulation Journal ; : 182-191, 1999.
Article in Korean | WPRIM (Western Pacific) | ID: wpr-45482

ABSTRACT

BACKGROUND: Transplantation of cardiac myocytes (CMs) into the injured heart emerges as a potential alternative for the treatment of heart failure. Genetic modification of CMs could enhance and/or modify its therapeutic effects. The characteristics of retroviral gene delivery, which is most commonly used in human trial, has been minimally studied in CMs due to its low efficiency in non-dividing cells. In this study, using newly developed high-titer retrovirus, we evaluated 1) the efficiency of gene transfer into CMs, 2) whether S phase during infection is necessary for the transduction, and 3) characteristics of gene delivery to mononucleated vs binucleated CMs. METHODS: Enriched CMs were cultured from the ventricles of 1 day-old rat hearts. The cells were transduced by MFG-nls-LacZ retroviruses (5x107 IU/ml) in the presence or absence of polybrene. 3H-thymidine was added to label cells in S phase. The cells were stained for b-galactosidase activity and then immunostained using MF20Ab to identify CMs. The cells were subsequently processed for in vitro autoradiography. RESULTS: 1)With 3 rounds of infection, 5.9% of total cultured cells were LacZ-positive. The efficiency of transduction reached upto 7.4% in the presence of polybrene 8 microgram/ml. 2)Nuclear morphology of LacZ-positive CMs was pleomorphic from mononucleated to multinucleated, mostly binucleated. 3)Among mononucleated CMs, 17% of cells were labelled with thymidine. Transduction efficiency (TDE) of thymidine-positive and -negative mononucleated CMs were 37.9% and 3.1%, respectively. Among binucleated cells, 28.9% of cells were labelled with thymidine. TDE of thymidine-positive and -negative binucleated CMs were 75.4% and 13.6%, respectively. 4)In total, TDE of binucleated cells were 3.5 times compared to the one of mononucleated cells (31.5% vs 9.0%). CONCLUSION: TDE of CMs using high-titer retrovirus is relatively low. S phase of cells during retroviral infection is not mandatory for the retroviral transduction. Binucleated CMs are susceptible to retroviral gene delivery and their TDE is higher than the one of mononucleated CMs.


Subject(s)
Animals , Humans , Rats , Autoradiography , Cells, Cultured , Dichlorodiphenyldichloroethane , Genetic Therapy , Heart , Heart Failure , Hexadimethrine Bromide , Myocytes, Cardiac , Retroviridae , S Phase , Thymidine , Zidovudine
SELECTION OF CITATIONS
SEARCH DETAIL
...