Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Liver Int ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847511

ABSTRACT

BACKGROUND AND AIMS: Cyclooxygenase-2 (COX-2) is involved in different liver diseases, but little is known about the significance of COX-2 in cholestatic injury. This study was designed to elucidate the role of COX-2 expression in hepatocytes during the pathogenesis of obstructive cholestasis. METHODS: We used genetically modified mice constitutively expressing human COX-2 in hepatocytes. Transgenic mice (hCOX-2-Tg) and their wild-type (Wt) littermates were either subjected to a mid-abdominal laparotomy or common bile duct ligation (BDL) for 2 or 5 days. Then, we explored the mechanisms underlying the role of COX-2 and its derived prostaglandins in liver function, and the synthesis and excretion of bile acids (BA) in response to cholestatic liver injury. RESULTS: After BDL, hCOX-2-Tg mice showed lower grades of hepatic necrosis and inflammation than Wt mice, in part by a reduced hepatic neutrophil recruitment associated with lower mRNA levels of pro-inflammatory cytokines. Furthermore, hCOX-2-Tg mice displayed a differential metabolic pattern of BA synthesis that led to an improved clearance after BDL-induced accumulation. In addition, an enhanced response to the BDL-induced oxidative stress and hepatic apoptosis was observed. In vitro experiments using hepatic cells that stably express hCOX-2 confirmed the cytoprotective role of prostaglandin E2 against BA toxicity. CONCLUSIONS: Taken together, our data indicate that constitutive expression of COX-2 in hepatocytes ameliorates cholestatic liver injury in mice by reducing inflammation and cell damage and by modulating BA metabolism, pointing to a role for COX-2 as a defensive response against cholestasis-derived BA accumulation and injury.

3.
Life Sci ; 287: 119936, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34506838

ABSTRACT

AIM: P-glycoprotein (P-gp) plays a critical role in the excretion of xenobiotics into bile. Previous studies have demonstrated that prolactin (PRL) regulates biotransformation and bile salt transport. Here we investigate whether the capability of the liver to transport xenobiotics into bile is altered in hyperprolactinemic states studying the modulation of hepatic P-gp by PRL. METHODS: We used lactating post-partum rats (PP), as a model of physiological hyperprolactinemia (15 and 21 days after delivery: PP15 and PP21, respectively), and ovariectomized rats treated with PRL (300 µg/day, 7 days, via osmotic minipumps, OVX + PRL). Hepatic P-gp expression and activity were evaluated by western blotting and using rhodamine 123 as substrate in vivo, respectively. Since P-gp is encoded by Mdr1a and Mdr1b in rodents, we quantified their expression by qPCR in primary hepatocyte cultures exposed to 0.1 µg/ml of PRL after 12 h. To further study the mechanism of hepatic P-gp modulation by PRL, hepatocytes were pretreated with actinomycin D and then exposed to PRL (0.1 µg/ml) for 12 h. KEY FINDINGS: We found increased hepatic P-gp protein expression and activity in PP15 and OVX + PRL. Also, a significant increase in Mdr1a and Mdr1b mRNA levels was observed in primary hepatocyte cultures exposed to PRL, pointing out the hormone direct action. Actinomycin D prevented these increases, confirming a transcriptional up-regulation of P-gp by PRL. SIGNIFICANCE: These findings suggest the possibility of an increased biliary excretion of xenobiotics substrates of P-gp, including therapeutic agents, affecting their pharmaco/toxicokinetics in hyperprolactinemic situations.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis , Liver/drug effects , Liver/metabolism , Prolactin/metabolism , Prolactin/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Animals , Cells, Cultured , Female , Gene Expression Regulation , Hepatocytes/drug effects , Hepatocytes/metabolism , Lactation/drug effects , Lactation/metabolism , Ovariectomy , Rats , Rats, Wistar , Sheep
4.
Hepatology ; 70(2): 650-665, 2019 08.
Article in English | MEDLINE | ID: mdl-30155948

ABSTRACT

Liver ischemia and reperfusion injury (IRI) remains a serious clinical problem affecting liver transplantation outcomes. IRI causes up to 10% of early organ failure and predisposes to chronic rejection. Cyclooxygenase-2 (COX-2) is involved in different liver diseases, but the significance of COX-2 in IRI is a matter of controversy. This study was designed to elucidate the role of COX-2 induction in hepatocytes against liver IRI. In the present work, hepatocyte-specific COX-2 transgenic mice (hCOX-2-Tg) and their wild-type (Wt) littermates were subjected to IRI. hCOX-2-Tg mice exhibited lower grades of necrosis and inflammation than Wt mice, in part by reduced hepatic recruitment and infiltration of neutrophils, with a concomitant decrease in serum levels of proinflammatory cytokines. Moreover, hCOX-2-Tg mice showed a significant attenuation of the IRI-induced increase in oxidative stress and hepatic apoptosis, an increase in autophagic flux, and a decrease in endoplasmic reticulum stress compared to Wt mice. Interestingly, ischemic preconditioning of Wt mice resembles the beneficial effects observed in hCOX-2-Tg mice against IRI due to a preconditioning-derived increase in endogenous COX-2, which is mainly localized in hepatocytes. Furthermore, measurement of prostaglandin E2 (PGE2 ) levels in plasma from patients who underwent liver transplantation revealed a significantly positive correlation of PGE2 levels and graft function and an inverse correlation with the time of ischemia. Conclusion: These data support the view of a protective effect of hepatic COX-2 induction and the consequent rise of derived prostaglandins against IRI.


Subject(s)
Cyclooxygenase 2/biosynthesis , Hepatocytes/enzymology , Liver/blood supply , Reperfusion Injury/etiology , Animals , Cyclooxygenase 2/physiology , Male , Mice , Mice, Transgenic
5.
Clin Sci (Lond) ; 133(1): 117-134, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30538149

ABSTRACT

We previously demonstrated in in vitro and ex vivo models that physiological concentrations of unconjugated bilirubin (BR) prevent oxidative stress (OS)-induced hepatocanalicular dysfunction and cholestasis. Here, we aimed to ascertain, in the whole rat, whether a similar cholestatic OS injury can be counteracted by heme oxygenase-1 (HO-1) induction that consequently elevates endogenous BR levels. This was achieved through the administration of hemin, an inducer of HO-1, the rate-limiting step in BR generation. We found that BR peaked between 6 and 8 h after hemin administration. During this time period, HO-1 induction fully prevented the pro-oxidant tert-butylhydroperoxide (tBuOOH)-induced drop in bile flow, and in the biliary excretion of bile salts and glutathione, the two main driving forces of bile flow; this was associated with preservation of the membrane localization of their respective canalicular transporters, bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2), which are otherwise endocytosed by OS. HO-1 induction counteracted the oxidation of intracellular proteins and membrane lipids induced by tBuOOH, and fully prevented the increase in the oxidized-to-total glutathione (GSHt) ratio, a sensitive parameter of hepatocellular OS. Compensatory elevations of the activity of the antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) were also prevented. We conclude that in vivo HO-1 induction protects the liver from acute oxidative injury, thus preventing consequent cholestasis. This reveals an important role for the induction of HO-1 and the consequently elevated levels of BR in preserving biliary secretory function under OS conditions, thus representing a novel therapeutic tool to limit the cholestatic injury that bears an oxidative background.


Subject(s)
Antioxidants/pharmacology , Cholestasis/prevention & control , Heme Oxygenase (Decyclizing)/biosynthesis , Hemin/pharmacology , Liver/drug effects , Oxidative Stress , Animals , Bile/metabolism , Bilirubin/metabolism , Catalase/metabolism , Cholestasis/chemically induced , Cholestasis/enzymology , Cholestasis/pathology , Disease Models, Animal , Enzyme Induction , Glutathione/metabolism , Liver/enzymology , Liver/pathology , Male , Rats, Wistar , Superoxide Dismutase/metabolism , tert-Butylhydroperoxide
6.
J Nutr Biochem ; 58: 17-27, 2018 08.
Article in English | MEDLINE | ID: mdl-29860102

ABSTRACT

Obesity is accompanied by a low-grade inflammation state, characterized by increased proinflammatory cytokines levels such as tumor necrosis factor alpha (TNFα) and interleukin-1 beta (IL-1ß). In this regard, there exists a lack of studies in hepatic tissue about the role of TNFα receptor 1 (TNFR1) in the context of obesity and insulin resistance during the progression of nonalcoholic fatty liver disease (NAFLD). The aim of this work was to evaluate the effects of high-caloric feeding (HFD) (40% fat, for 16 weeks) on liver inflammation-induced apoptosis, insulin resistance, hepatic lipid accumulation and its progression toward nonalcoholic steatohepatitis (NASH) in TNFR1 knock-out and wild-type mice. Mechanisms involved in HFD-derived IL-1ß release and impairment of insulin signaling are still unknown, so we determined whether IL-1ß affects liver insulin sensitivity and apoptosis through TNFα receptor 1 (TNFR1)-dependent pathways. We showed that knocking out TNFR1 induces an enhanced IL-1ß plasmatic release upon HFD feed. This was correlated with higher hepatic and epididymal white adipose tissue mRNA levels. In vivo and in vitro assays confirmed an impairment in hepatic insulin signaling, in part due to IL-1ß-induced decrease of AKT activation and diminution of IRS1 levels, followed by an increase in inflammation, macrophage (resident and recruited) accumulation, hepatocyte apoptotic process and finally hepatic damage. In addition, TNFR1 KO mice displayed higher levels of pro-fibrogenic markers. TNFR1 signaling disruption upon an HFD leads to an accelerated progression from simple steatosis to a more severe phenotype with many NASH features, pointing out a key role of TNFR1 in NAFLD progression.


Subject(s)
Diet, High-Fat/adverse effects , Non-alcoholic Fatty Liver Disease/etiology , Receptors, Tumor Necrosis Factor, Type I/metabolism , Animals , Apoptosis/genetics , Insulin/metabolism , Insulin Resistance , Interleukin-1beta/metabolism , Liver/metabolism , Liver/pathology , Macrophages/metabolism , Macrophages/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/pathology , Receptors, Tumor Necrosis Factor, Type I/genetics , Signal Transduction
7.
Peptides ; 101: 44-50, 2018 03.
Article in English | MEDLINE | ID: mdl-29305881

ABSTRACT

Islet-Neogenesis Associated Protein-Pentadecapeptide (INGAP-PP) increases ß-cell mass and enhances glucose and amino acids-induced insulin secretion. Our aim was to demonstrate its effect on liver metabolism. For that purpose, adult male Wistar rats were injected twice-daily (10 days) with saline solution or INGAP-PP (250 µg). Thereafter, serum glucose, triglyceride and insulin levels were measured and homeostasis model assessment (HOMA-IR) and hepatic insulin sensitivity (HIS) were determined. Liver glucokinase and glucose-6-phosphatase (G-6-Pase) expression and activity, phosphoenolpyruvate carboxykinase (PEPCK) expression, phosphofructokinase-2 (PFK-2) protein content, P-Akt/Akt and glycogen synthase kinase-3ß (P-GSK3/GSK3) protein ratios and glycogen deposit were also determined. Additionally, glucokinase activity and G-6-Pase and PEPCK gene expression were also determined in isolated hepatocytes from normal rats incubated with INGAP-PP (5 µg/ml). INGAP-PP administration did not modify any of the serum parameters tested but significantly increased activity of liver glucokinase and the protein level of its cytosolic activator, PFK-2. Conversely, INGAP-PP treated rats decreased gene expression and enzyme activity of gluconeogenic enzymes, G-6-Pase and PEPCK. They also showed a higher glycogen deposit and P-GSK3/GSK3 and P-Akt/Akt ratio. In isolated hepatocytes, INGAP-PP increased GK activity and decreased G-6-Pase and PEPCK expression. These results demonstrate a direct effect of INGAP-PP on the liver acting through P-Akt signaling pathway. INGAP-PP enhances liver glucose metabolism and deposit and reduces its production/output, thereby contributing to maintain normal glucose homeostasis. These results reinforce the concept that INGAP-PP might become a useful tool to treat people with impaired islet/liver glucose metabolism as it occurs in T2D.


Subject(s)
Carbohydrate Metabolism/drug effects , Liver/metabolism , Oligopeptides/pharmacology , Pancreatitis-Associated Proteins/chemistry , Signal Transduction/drug effects , Animals , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Islets of Langerhans/metabolism , Male , Oligopeptides/chemistry , Rats , Rats, Wistar
8.
Article in English | MEDLINE | ID: mdl-29473534

ABSTRACT

BACKGROUND: Ligaria cuneifolia (Lc) (R. et P.) Tiegh. (Loranthaceae) (Argentine mistletoe) is usually used in local folk medicine. OBJECTIVE: We studied the effect of treatment with the Lc proanthocyanidin-enriched fraction (PLc) in rats fed with Cho-enriched diet on plasma lipids levels, the hemorheological parameters, and biliary secretion. METHOD: Adult male Wistar rats were fed ad libitum with a Cho-enriched diet (Cho (97% purity) 8 g/kg of diet and corn oil 280 g/kg of diet) during 28 days. Then, were separated in six experimental groups (n=5 each one), which were injected ip every 24 h with: 1) saline solution (control group, C) and 2) PLc, 3 mg/100 g body weight (treated group, C+PLc), during 3, 7 and 10 days. Group C presented an increase in plasma levels of Cho and Triglycerides (TG), and also, accumulation of hepatic lipid droplets. Also, cell shape and their corresponding morphological index (MI) were altered too. RESULTS: The treatment with PLc at 3, 7 and 10 days produces a diminution in the plasma Cho, LDL-Cho and serum TG levels, accompanied by a diminution of the lipid accumulation in the liver. The rates of bile acid output in bile can explain the diminution of plasma Cho, evidencing that some of the enzymes involved in the cholesterol conversion into bile acids could be up regulated by the treatment with PLc, leading to the observed increase bile flow. PLc treatment leads to a diminution of plasma levels of Cho and TG. CONCLUSION: Essentially, the treatment with PLc, despite the duration produces a modification in hemorheological parameters approaching the values of the experimental group with standard diet. Plasma levels of Cho, LDL-Cho and TG represent selected markers to evaluate the effect of enriched extract from Ligaria cuneifolia. Further work is necessary to better evaluate the mechanisms by which PLc induces modifications in the lipids metabolism.


Subject(s)
Anticholesteremic Agents/pharmacology , Cholesterol, Dietary/blood , Hypercholesterolemia/prevention & control , Loranthaceae , Plant Extracts/pharmacology , Proanthocyanidins/pharmacology , Animals , Anticholesteremic Agents/isolation & purification , Biomarkers/blood , Disease Models, Animal , Hypercholesterolemia/blood , Hypercholesterolemia/etiology , Lipid Droplets/drug effects , Lipid Droplets/metabolism , Liver/drug effects , Liver/metabolism , Loranthaceae/chemistry , Male , Phytotherapy , Plant Extracts/isolation & purification , Plants, Medicinal , Proanthocyanidins/isolation & purification , Rats, Wistar , Time Factors , Triglycerides/blood
9.
Toxicol Appl Pharmacol ; 315: 12-22, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27899278

ABSTRACT

Molecular mechanisms on sepsis progression are linked to the imbalance between reactive oxygen species (ROS) production and cellular antioxidant capacity. Previous studies demonstrated that benznidazole (BZL), known for its antiparasitic action on Trypanosoma cruzi, has immunomodulatory effects, increasing survival in C57BL/6 mice in a model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). The mechanism by which BZL inhibits inflammatory response in sepsis is poorly understood. Also, our group recently reported that BZL is able to activate the nuclear factor erytroide-derived 2-Like 2 (NRF2) in vitro. The aim of the present work was to delineate the beneficial role of BZL during sepsis, analyzing its effects on the cellular redox status and the possible link to the innate immunity receptor TLR4. Specifically, we analyzed the effect of BZL on Nrf2 regulation and TLR4 expression in liver of mice 24hours post-CLP. BZL was able to induce NRF2 nuclear protein localization in CLP mice. Also, we found that protein kinase C (PKC) is involved in the NRF2 nuclear accumulation and induction of its target genes. In addition, BZL prompted a reduction in hepatic CLP-induced TLR4 protein membrane localization, evidencing its immunomodulatory effects. Together, our results demonstrate that BZL induces hepatic NRF2 activation with the concomitant increase in the antioxidant defenses, and the attenuation of inflammatory response, in part, by inhibiting TLR4 expression in a murine model of sepsis.


Subject(s)
Chagas Disease/drug therapy , Disease Models, Animal , Inflammation/prevention & control , Liver/drug effects , NF-E2-Related Factor 2/metabolism , Nitroimidazoles/pharmacology , Sepsis/drug therapy , Trypanocidal Agents/pharmacology , Animals , Antioxidants/metabolism , Down-Regulation/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/genetics , Nitroimidazoles/therapeutic use , Oxidative Stress , Toll-Like Receptor 4/metabolism , Trypanocidal Agents/therapeutic use
10.
Biochim Biophys Acta ; 1862(9): 1710-23, 2016 09.
Article in English | MEDLINE | ID: mdl-27321932

ABSTRACT

Cyclooxygenase-2 (COX-2) is involved in different liver diseases but little is known about the significance of COX-2 in the development and progression of non-alcoholic steatohepatitis (NASH). This study was designed to elucidate the role of COX-2 expression in hepatocytes in the pathogenesis of steatohepatitis and hepatic fibrosis. In the present work, hepatocyte-specific COX-2 transgenic mice (hCOX-2-Tg) and their wild-type (Wt) littermates were either fed methionine-and-choline deficient (MCD) diet to establish an experimental non-alcoholic steatohepatitis (NASH) model or injected with carbon tetrachloride (CCl4) to induce liver fibrosis. In our animal model, hCOX-2-Tg mice fed MCD diet showed lower grades of steatosis, ballooning and inflammation than Wt mice, in part by reduced recruitment and infiltration of hepatic macrophages, with a corresponding decrease in serum levels of pro-inflammatory cytokines. Furthermore, hCOX-2-Tg mice showed a significant attenuation of the MCD diet-induced increase in oxidative stress and hepatic apoptosis observed in Wt mice. Even more, hCOX-2-Tg mice treated with CCl4 had significantly lower stages of fibrosis and less hepatic content of collagen, hydroxyproline and pro-fibrogenic markers than Wt controls. Collectively, our data indicates that constitutive hepatocyte COX-2 expression ameliorates NASH and liver fibrosis development in mice by reducing inflammation, oxidative stress and apoptosis and by modulating activation of hepatic stellate cells, respectively, suggesting a possible protective role for COX-2 induction in NASH/NAFLD progression.


Subject(s)
Cyclooxygenase 2/genetics , Hepatocytes/enzymology , Liver Cirrhosis/prevention & control , Non-alcoholic Fatty Liver Disease/prevention & control , Animals , Apoptosis , Cells, Cultured , Choline Deficiency/complications , Cyclooxygenase 2/metabolism , Dinoprostone/pharmacology , Disease Models, Animal , Gene Expression , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/enzymology , Hepatocytes/drug effects , Hepatocytes/pathology , Liver Cirrhosis/enzymology , Liver Cirrhosis/etiology , Male , Methionine/deficiency , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Transgenic , Non-alcoholic Fatty Liver Disease/enzymology , Non-alcoholic Fatty Liver Disease/etiology , Oxidative Stress , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
11.
Toxicol Appl Pharmacol ; 304: 90-8, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27180241

ABSTRACT

Oxidative stress is a frequent cause underlying drug-induced hepatotoxicity. Benznidazole (BZL) is the only trypanocidal agent available for treatment of Chagas disease in endemic areas. Its use is associated with side effects, including increases in biomarkers of hepatotoxicity. However, BZL potential to cause oxidative stress has been poorly investigated. Here, we evaluated the effect of a pharmacologically relevant BZL concentration (200µM) at different time points on redox status and the counteracting mechanisms in the human hepatic cell line HepG2. BZL increased reactive oxygen species (ROS) after 1 and 3h of exposure, returning to normality at 24h. Additionally, BZL increased glutathione peroxidase activity at 12h and the oxidized glutathione/total glutathione (GSSG/GSSG+GSH) ratio that reached a peak at 24h. Thus, an enhanced detoxification of peroxide and GSSG formation could account for ROS normalization. GSSG/GSSG+GSH returned to control values at 48h. Expression of the multidrug resistance-associated protein 2 (MRP2) and GSSG efflux via MRP2 were induced by BZL at 24 and 48h, explaining normalization of GSSG/GSSG+GSH. BZL activated the nuclear erythroid 2-related factor 2 (Nrf2), already shown to modulate MRP2 expression in response to oxidative stress. Nrf2 participation was confirmed using Nrf2-knockout mice in which MRP2 mRNA expression was not affected by BZL. In summary, we demonstrated a ROS increase by BZL in HepG2 cells and a glutathione peroxidase- and MRP2 driven counteracting mechanism, being Nrf2 a key modulator of this response. Our results could explain hepatic alterations associated with BZL therapy.


Subject(s)
Multidrug Resistance-Associated Proteins , NF-E2-Related Factor 2 , Nitroimidazoles , Oxidative Stress , Trypanocidal Agents , Animals , Humans , Male , Mice , Glutathione Disulfide/metabolism , Glutathione Peroxidase/metabolism , Hep G2 Cells , Mice, Inbred C57BL , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/biosynthesis , NF-E2-Related Factor 2/biosynthesis , Nitroimidazoles/pharmacology , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , RNA, Small Interfering/drug effects , Trypanocidal Agents/pharmacology
12.
Mol Cell Biol ; 35(14): 2554-67, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25963660

ABSTRACT

Cyclooxygenase (COX) catalyzes the first step in prostanoid biosynthesis and exists as two isoforms. COX-1 is a constitutive enzyme involved in physiological processes, whereas COX-2 is induced by a variety of stimuli. MicroRNAs (miRNAs) are noncoding RNAs that function as key posttranscriptional regulators of gene expression. Although it is known that COX-2 expression is regulated by miRNAs, there are no data regarding COX-2 involvement in miRNA regulation. Considering our previous results showing that COX-2 expression in hepatocytes protects against insulin resistance, we evaluated the role of COX-2 in the regulation of a specific set of miRNAs implicated in insulin signaling in liver cells. Our results provide evidence of the molecular basis for a novel function of COX-2 in miRNA processing. COX-2 represses miRNA 23b (miR-23b), miR-146b, and miR-183 expression in liver cells by increasing the level of DEAD-box helicase p68 (DDX5) through phosphatidylinositol 3-kinase (PI3K)/p300 signaling and by modulating the enzymatic function of the Drosha (RNase type III) complex through its physical association with DDX5. The decrease of miR-183 expression promotes protection against insulin resistance by increasing insulin receptor substrate 1 (IRS1) levels. These results indicate that the modulation of miRNA processing by COX-2 is a key event in insulin signaling in liver and has potential clinical implications for the management of various hepatic dysfunctions.


Subject(s)
Cyclooxygenase 2/genetics , DEAD-box RNA Helicases/genetics , Liver/metabolism , MicroRNAs/genetics , Animals , Blotting, Western , Cell Line , Cell Line, Tumor , Cyclooxygenase 2/metabolism , DEAD-box RNA Helicases/metabolism , Gene Expression Regulation , Hepatocytes/metabolism , Humans , Insulin Receptor Substrate Proteins/metabolism , Insulin Resistance/genetics , Mice, Transgenic , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Binding , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Ribonuclease III/metabolism
13.
Diabetes ; 64(5): 1522-31, 2015 May.
Article in English | MEDLINE | ID: mdl-25422106

ABSTRACT

Accumulation evidence links obesity-induced inflammation as an important contributor to the development of insulin resistance, which plays a key role in the pathophysiology of obesity-related diseases such as type 2 diabetes and nonalcoholic fatty liver disease. Cyclooxygenase (COX)-1 and -2 catalyze the first step in prostanoid biosynthesis. Because adult hepatocytes fail to induce COX-2 expression regardless of the proinflammatory stimuli used, we have evaluated whether this lack of expression under mild proinflammatory conditions might constitute a permissive condition for the onset of insulin resistance. Our results show that constitutive expression of human COX-2 (hCOX-2) in hepatocytes protects against adiposity, inflammation, and, hence, insulin resistance induced by a high-fat diet, as demonstrated by decreased hepatic steatosis, adiposity, plasmatic and hepatic triglycerides and free fatty acids, increased adiponectin-to-leptin ratio, and decreased levels of proinflammatory cytokines, together with an enhancement of insulin sensitivity and glucose tolerance. Furthermore, hCOX-2 transgenic mice exhibited increased whole-body energy expenditure due in part by induction of thermogenesis and fatty acid oxidation. The analysis of hepatic insulin signaling revealed an increase in insulin receptor-mediated Akt phosphorylation in hCOX-2 transgenic mice. In conclusion, our results point to COX-2 as a potential therapeutic target against obesity-associated metabolic dysfunction.


Subject(s)
Cyclooxygenase 2/metabolism , Dietary Fats/adverse effects , Fatty Liver/metabolism , Insulin Resistance/physiology , Liver/enzymology , Obesity/metabolism , Animals , Cyclooxygenase 2/genetics , Dietary Fats/administration & dosage , Gene Expression Regulation, Enzymologic/drug effects , Humans , Inflammation/metabolism , Insulin/metabolism , Mice , Mice, Transgenic
14.
J Interferon Cytokine Res ; 34(11): 858-69, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24950290

ABSTRACT

Interferon-α2b (IFN-α2b) reduces proliferation and increases apoptosis in hepatocellular carcinoma cells by decreasing ß-catenin/TCF4/Smads interaction. Forkhead box O-class 3a (FoxO3a) participates in proliferation and apoptosis and interacts with ß-catenin and Smads. FoxO3a is inhibited by Akt, IκB kinase ß (IKKß), and extracellular-signal-regulated kinase (Erk), which promote FoxO3a sequestration in the cytosol, and accumulates in the nucleus upon phosphorylation by c-Jun N-terminal kinase (JNK) and p38 mitogen-activated kinase (p38 MAPK). We analyzed FoxO3a subcellular localization, the participating kinases, FoxO3a/ß-catenin/Smads association, and FoxO3a target gene expression in IFN-α2b-stimulated HepG2/C3A and Huh7 cells. Total FoxO3a and Akt-phosphorylated FoxO3a levels decreased in the cytosol, whereas total FoxO3a levels increased in the nucleus upon IFN-α2b stimulus. IFN-α2b reduced Akt, IKKß, and Erk activation, and increased JNK and p38 MAPK activation. p38 MAPK inhibition blocked IFN-α2b-induced FoxO3a nuclear localization. IFN-α2b enhanced FoxO3a association with ß-catenin and Smad2/3/7. Two-step coimmunoprecipitation experiments suggest that these proteins coexist in the same complex. The expression of several FoxO3a target genes increased with IFN-α2b. FoxO3a knockdown prevented the induction of these genes, suggesting that FoxO3a acts as mediator of IFN-α2b action. Results suggest a ß-catenin/Smads switch from TCF4 to FoxO3a. Such events would contribute to the IFN-α2b-mediated effects on cellular proliferation and apoptosis. These results demonstrate new mechanisms for IFN-α action, showing the importance of its application in antitumorigenic therapies.


Subject(s)
Carcinoma, Hepatocellular/therapy , Cell Nucleus/metabolism , Forkhead Transcription Factors/metabolism , Immunotherapy/methods , Interferon-alpha/pharmacology , Smad Proteins/metabolism , beta Catenin/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Carcinoma, Hepatocellular/immunology , Forkhead Box Protein O3 , Forkhead Transcription Factors/genetics , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Hep G2 Cells , Humans , Protein Binding/drug effects , Protein Transport/drug effects , RNA, Small Interfering/genetics , Transcription Factor 4 , Transcription Factors/metabolism , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
15.
Clin Sci (Lond) ; 127(12): 665-77, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24934088

ABSTRACT

Type 2 diabetes has a complex pathology that involves a chronic inflammatory state. Emerging evidence suggests a link between the innate immune system receptor NOD1 (nucleotide-binding and oligomerization domain 1) and the pathogenesis of diabetes, in monocytes and hepatic and adipose tissues. The aim of the present study was to assess the role of NOD1 in the progression of diabetic cardiomyopathy. We have measured NOD1 protein in cardiac tissue from Type 2 diabetic (db) mice. Heart and isolated cardiomyocytes from db mice revealed a significant increase in NOD1, together with an up-regulation of nuclear factor κB (NF-κB) and increased apoptosis. Heart tissue also exhibited an enhanced expression of pro-inflammatory cytokines. Selective NOD1 activation with C12-γ-D-glutamyl-m-diaminopimelic acid (iEDAP) resulted in an increased NF-κB activation and apoptosis, demonstrating the involvement of NOD1 both in wild-type and db mice. Moreover, HL-1 cardiomyocytes exposed to elevated concentrations of glucose plus palmitate displayed an enhanced NF-κB activity and apoptotic profile, which was prevented by silencing of NOD1 expression. To address this issue in human pathology, NOD1 expression was evaluated in myocardium obtained from patients with Type 2 diabetes (T2DMH) and from normoglycaemic individuals without cardiovascular histories (NH). We have found that NOD1 was expressed in both NH and T2DMH; however, NOD1 expression was significantly pronounced in T2DMH. Furthermore, both the pro-inflammatory cytokine tumour necrosis factor α (TNF-α) and the apoptosis mediator caspase-3 were up-regulated in T2DMH samples. Taken together, our results define an active role for NOD1 in the heightened inflammatory environment associated with both experimental and human diabetic cardiac disease.


Subject(s)
Diabetic Cardiomyopathies/metabolism , Myocardium/metabolism , Nod1 Signaling Adaptor Protein/metabolism , Animals , Apoptosis , Cell Line , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/pathology , Disease Progression , Glucose/pharmacology , Humans , Mice , NF-kappa B/metabolism , Palmitates/pharmacology , Up-Regulation
16.
Apoptosis ; 19(5): 851-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24415197

ABSTRACT

We previously found that mitochondrial aquaporin-8 (mtAQP8) channels facilitate mitochondrial H2O2 release in human hepatoma HepG2 cells and that their knockdown causes oxidant-induced mitochondrial dysfunction and loss of viability. Here, we studied whether apoptosis or necrosis is involved as the mode of cell death. We confirmed that siRNA-induced mtAQP8 knockdown significantly decreased HepG2 viability by MTT assay, LDH leakage, and trypan blue exclusion test. Analysis of mitochondrial proapoptotic Bax-to-antiapoptotic BclXL ratio, mitochondrial cytochrome c release and caspase-3 activation showed no alterations in mtAQP8-knockdown cells. This indicates a primary mechanism of cell death other than the intrinsic mitochondrial apoptotic pathway. Thus, nuclear staining with DAPI did not reveal any increase of apoptotic features, i.e. chromatin condensation or nuclear fragmentation. Flow cytometry studies after double cell staining with annexin V and propidium iodide confirmed lack of apoptosis and suggested necrosis as the primary mechanism of death in mtAQP8-knockdown HepG2 cells. Necrosis was further supported by the increased nuclear delocalization and extracellular release of the High Mobility Group Box 1 protein. The knockdown of mtAQP8 in another human hepatoma-derived cell line, i.e. HuH-7 cells, also induced necrotic but not apoptotic death. Our data suggest that mtAQP8 knockdown induces necrotic cell death in human neoplastic hepatic cells, a finding that might be relevant to therapeutic strategies against hepatoma cells.


Subject(s)
Apoptosis , Aquaporins/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Mitochondria/metabolism , Aquaporins/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Gene Knockdown Techniques , Humans , Liver Neoplasms/metabolism , Necrosis
17.
Mol Nutr Food Res ; 58(2): 289-300, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24124108

ABSTRACT

SCOPE: Quercetin is the most abundant flavonoid in human diet. It has special interest as it holds anticancerous properties. This study aims to clarify the mechanisms involved in quercetin effects during the occurrence of preneoplastic lesions in rat liver. METHODS AND RESULTS: Adult male Wistar rats were subjected to a two-phase model of hepatocarcinogenesis (initiated-promoted group). Initiated-promoted animals also received quercetin 10 and 20 mg/kg body weight (IPQ10 and IPQ20 groups, respectively). Antioxidant defenses were modified by quercetin administration at both doses. However, only IPQ20 group showed a reduction in number and volume of preneoplastic lesions. This group showed increased apoptosis and a reduction in the proliferative index. In addition, IPQ20 group displayed a reduction of cell percentages in G1 and S phases, accumulation in G2, and decrease in M phase, with reduced expression of cyclin D1, cyclin A, cyclin B, and cyclin-dependent kinase 1. Interestingly, peroxisome proliferator activated receptor-α levels were reduced in IPQ20 group. CONCLUSION: The outcomes of this study represent a significant contribution to the current understanding on the preventive mechanisms of quercetin during the early stages of liver cancer development, demonstrating that in addition to its known proapoptotic characteristics, the flavonoid modulates the expression of critical cell cycle regulators and peroxisome proliferator activated receptor-α activity.


Subject(s)
Apoptosis/drug effects , Carcinogenesis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Liver Neoplasms/prevention & control , Quercetin/pharmacology , Animals , CDC2 Protein Kinase/metabolism , Cell Division/drug effects , Cyclin D1/metabolism , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/metabolism , Male , PPAR alpha/metabolism , Rats , Rats, Wistar
18.
Liver Int ; 34(10): 1566-77, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24289330

ABSTRACT

BACKGROUND: FoxO3a, a member of the FOXO family of transcription factors, is expressed in adult liver and modulates the expression of genes involved in apoptosis. FoxO3a is post-translationally regulated, negatively by PI3K/Akt and MAPK/Erk and positively by oxidative stress/JNK pathways. In previous works, we have demonstrated that interferon-α2b (IFN-α2b) induces apoptosis of hepatic preneoplastic foci through the production of reactive oxygen species (ROS). AIMS: To investigate the post-translational signal events triggered by the oxidative stress induced by IFN-α2b and the modulation of FoxO3a transcriptional activity during these events in rat preneoplastic liver. METHODS: Adult male Wistar rats were subjected to a two-phase model of hepatocarcinogenesis. A group of animals received IFN-α2b and another group received IFN-α2b and ascorbic acid (ASC), by intraperitoneal injection. Lipid peroxidation, immunohistochemistry, immunoblotting, co-immunoprecipitation and sqRT-PCR assays were performed to explore the role of ROS, JNK, Akt, Erk, FoxO3a, ß-catenin and PUMA in the IFN-α2b-mediated apoptotic mechanism. RESULTS: In vivo IFN-α2b treatment induced endogenous production of ROS which activated JNK. IFN-α2b blocked the activation of Akt and Erk, avoiding FoxO3a activity repression. Activated JNK was responsible for the nuclear translocation and transcriptional activity of FoxO3a which positively modulated the expression of PUMA, a proapoptotic player. In addition, nuclear FoxO3a competed for the nuclear ß-catenin associated to TCF, inhibiting the canonical Wnt signalling pathway. CONCLUSIONS: The data presented here propose a model in which in vivo IFN-α2b treatment induces nuclear translocation and transcriptional activity of FoxO3a, triggering the mitochondrial apoptotic pathway in hepatic preneoplastic foci.


Subject(s)
Apoptosis/genetics , Carcinogenesis/drug effects , Forkhead Transcription Factors/metabolism , Gene Expression Regulation/physiology , Liver/metabolism , Oxidative Stress/physiology , Signal Transduction/physiology , Animals , Forkhead Box Protein O3 , Gene Expression Regulation/genetics , Immunoblotting , Immunohistochemistry , Immunoprecipitation , Interferon alpha-2 , Interferon-alpha/pharmacology , Lipid Peroxidation , Male , Models, Biological , Protein Processing, Post-Translational/genetics , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Recombinant Proteins/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics
19.
J Cell Biochem ; 114(3): 669-80, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23059845

ABSTRACT

Increased expression of COX-2 has been linked to inflammation and carcinogenesis. Constitutive expression of COX-2 protects hepatocytes from several pro-apoptotic stimuli. Increased hepatic apoptosis has been observed in experimental models of diabetes. Our present aim was to analyze the role of COX-2 as a regulator of apoptosis in diabetic mouse liver. Mice of C57BL/6 strain wild type (Wt) and transgenic in COX-2 (hCOX-2 Tg) were separated into Control (vehicle) and SID (streptozotocin induced diabetes, 200 mg/kg body weight, i.p.). Seven days post-injection, Wt diabetic animals showed a decrease in PI3K activity and P-Akt levels, an increase of P-JNK, P-p38, pro-apoptotic Bad and Bax, release of cytochrome c and activities of caspases-3 and -9, leading to an increased apoptotic index. This situation was improved in diabetic COX-2 Tg. In addition, SID COX-2 Tg showed increased expression of anti-apoptotic Mcl-1 and XIAP. Pro-apoptotic state in the liver of diabetic animals was improved by over-expression of COX-2. We also analyzed the roles of high glucose-induced apoptosis and hCOX-2 in vitro. Non-transfected and hCOX-2-transfected cells were cultured at 5 and 25 mM of glucose by 72 h. At 25 mM there was an increase in apoptosis in non-transfected cells versus those exposed to 5 mM. This increase was partly prevented in transfected cells at 25 mM. Moreover, the protective effect observed in hCOX-2-transfected cells was suppressed by addition of DFU (COX-2 selective inhibitor), and mimicked by addition of PGE(2) in non-transfected cells. Taken together, these results demonstrate that hyperglycemia-induced hepatic apoptosis is protected by hCOX-2 expression.


Subject(s)
Apoptosis , Cyclooxygenase 2/metabolism , Hyperglycemia/metabolism , Liver/metabolism , Animals , Caspase 3/metabolism , Caspase 9/metabolism , Cell Line , Cyclooxygenase 2/genetics , Cytochromes c/biosynthesis , Diabetes Mellitus, Experimental/metabolism , Glucose/metabolism , Humans , JNK Mitogen-Activated Protein Kinases/biosynthesis , Liver/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myeloid Cell Leukemia Sequence 1 Protein , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Streptozocin , X-Linked Inhibitor of Apoptosis Protein/biosynthesis , bcl-2-Associated X Protein/biosynthesis , bcl-Associated Death Protein/biosynthesis , p38 Mitogen-Activated Protein Kinases/biosynthesis
20.
Toxicol Appl Pharmacol ; 264(2): 246-54, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22910329

ABSTRACT

Human aquaporin-8 (AQP8) channels facilitate the diffusional transport of H(2)O(2) across membranes. Since AQP8 is expressed in hepatic inner mitochondrial membranes, we studied whether mitochondrial AQP8 (mtAQP8) knockdown in human hepatoma HepG2 cells impairs mitochondrial H(2)O(2) release, which may lead to organelle dysfunction and cell death. We confirmed AQP8 expression in HepG2 inner mitochondrial membranes and found that 72h after cell transfection with siRNAs targeting two different regions of the human AQP8 molecule, mtAQP8 protein specifically decreased by around 60% (p<0.05). Studies in isolated mtAQP8-knockdown mitochondria showed that H(2)O(2) release, assessed by Amplex Red, was reduced by about 45% (p<0.05), an effect not observed in digitonin-permeabilized mitochondria. mtAQP8-knockdown cells showed an increase in mitochondrial ROS, assessed by dichlorodihydrofluorescein diacetate (+120%, p<0.05) and loss of mitochondrial membrane potential (-80%, p<0.05), assessed by tetramethylrhodamine-coupled quantitative fluorescence microscopy. The mitochondria-targeted antioxidant MitoTempol prevented ROS accumulation and dissipation of mitochondrial membrane potential. Cyclosporin A, a mitochondrial permeability transition pore blocker, also abolished the mtAQP8 knockdown-induced mitochondrial depolarization. Besides, the loss of viability in mtAQP8 knockdown cells verified by MTT assay, LDH leakage, and trypan blue exclusion test could be prevented by cyclosporin A. Our data on human hepatoma HepG2 cells suggest that mtAQP8 facilitates mitochondrial H(2)O(2) release and that its defective expression causes ROS-induced mitochondrial depolarization via the mitochondrial permeability transition mechanism, and cell death.


Subject(s)
Aquaporins/genetics , Aquaporins/physiology , Cell Survival/genetics , Cell Survival/physiology , Membrane Potential, Mitochondrial/genetics , Mitochondria, Liver/metabolism , Reactive Oxygen Species/metabolism , Adenosine Triphosphate/metabolism , Blotting, Western , Cyclosporine/pharmacology , Hep G2 Cells , Humans , Hydrogen Peroxide/metabolism , L-Lactate Dehydrogenase/metabolism , Microscopy, Fluorescence , Oxidants/metabolism , Permeability , RNA, Small Interfering/biosynthesis , RNA, Small Interfering/genetics , Tetrazolium Salts , Thiazoles , Trypan Blue
SELECTION OF CITATIONS
SEARCH DETAIL
...