Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 237: 111995, 2022 12.
Article in English | MEDLINE | ID: mdl-36152470

ABSTRACT

In the present work, the synthesis, characterization, antifungal activity, molecular docking study and in silico approach of five thiosemicarbazone derivatives and their corresponding zinc(II) complexes are described. The compounds were characterized by elemental analysis, IR, UV-Vis and NMR spectroscopic measurements, molar conductivity measurements, emission spectra, high-resolution mass spectrometry and X ray study. The antifungal activity of the free ligands and synthesized compounds was preliminarily evaluated against Candida albicans (ATCC 90028), Candida tropicalis (ATCC 13803) and Candida glabrata (ATCC 2001), by the minimum inhibitory concentration (MIC) assay. Two complexes, 4 (MIC = 3.18 to 6.37 µM) and 5 (MIC = 25.95 µM for all) showed promising results, being highly active against all strains evaluated. The X-ray analyses shown that the complex 2 crystallizes in the centrosymmetric space group P21/c of the monoclinic system and the coordination sphere around zinc(II) atom is better described as slightly distorted octahedral. The Hirshfeld surface (HS) analysis showed that non-classical H···H and C···H/H···C contacts contribute with 65.9% while the S···H and N···H (21%) and Cl···H and O···H interactions (12%) complete the HS area. The molecular docking results, performed against CYP51 enzyme (sterol 14α-demethylase) of C. albicans and C. glabrata shows that the complexes 4 (ΔG = -10.75 and - 12.90 kcal/ mol) and 5 (ΔG = -11.12 and - 14.53 kcal/ mol) showed the highest binding free energies of all compounds. The ADME-Tox (absorption, distribution, metabolism, excretion and toxicity) in silico parameters evaluated showed promising results for all compounds.


Subject(s)
Coordination Complexes , Thiosemicarbazones , Molecular Docking Simulation , Antifungal Agents/chemistry , Zinc/chemistry , Ligands , Thiosemicarbazones/chemistry , Microbial Sensitivity Tests , Candida albicans , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Molecular Structure
3.
Int J Mol Sci ; 21(21)2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33171773

ABSTRACT

Considering our previous findings on the remarkable activity exhibited by cobalt(III) with 2-acetylpyridine-N(4)-R-thiosemicarbazone (Hatc-R) compounds against Mycobacterium tuberculosis, the present study aimed to explored new structure features of the complexes of the type [Co(atc--R)2]Cl, where R = methyl (Me, 1) or phenyl (Ph, 2) (13C NMR, high-resolution mass spectrometry, LC-MS/MS, fragmentation study) together with its antibacterial and antiviral biological activities. The minimal inhibitory and minimal bactericidal concentrations (MIC and MBC) were determined, as well as the antiviral potential of the complexes on chikungunya virus (CHIKV) infection in vitro and cell viability. [Co(atc-Ph)2]Cl revealed promising MIC and MBC values which ranged from 0.39 to 0.78 µg/mL in two strains tested and presented high potential against CHIKV by reducing viral replication by up to 80%. The results showed that the biological activity is strongly influenced by the peripheral substituent groups at the N(4) position of the atc-R1- ligands. In addition, molecular docking analysis was performed. The relative binding energy of the docked compound with five bacteria strains was found in the range of -3.45 and -9.55 kcal/mol. Thus, this work highlights the good potential of cobalt(III) complexes and provide support for future studies on this molecule aiming at its antibacterial and antiviral therapeutic application.


Subject(s)
Cobalt/pharmacology , Thiosemicarbazones/chemistry , Anti-Bacterial Agents/pharmacology , Antiviral Agents/pharmacology , Bacteria/drug effects , Chikungunya Fever/drug therapy , Chikungunya virus/drug effects , Chromatography, Liquid/methods , Cobalt/chemistry , Coordination Complexes/pharmacology , Ligands , Microbial Sensitivity Tests , Molecular Docking Simulation , Tandem Mass Spectrometry/methods , Thiosemicarbazones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...