Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; 6(2): 352-62, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15751359

ABSTRACT

We demonstrate that graphite powder and multiwalled carbon nanotubes (MWCNTs) can be derivatised by 4-nitrobenzylamine (4-NBA) simply by stirring the graphite powder or MWCNTs in a solution of acetonitrile containing 10 mM 4-NBA. We propose that 4-NBA partially intercalates at localised edge-plane or edge-plane-like defect sites and this hypothesis with a range of experimental data provided by electrochemistry in both aqueous and nonaqueous media, electron microscopy and X-ray powder diffraction.

2.
Org Biomol Chem ; 2(15): 2188-94, 2004 Aug 07.
Article in English | MEDLINE | ID: mdl-15280954

ABSTRACT

A series of six chalcoglycosides (phenyl-2,3,4,6-tetra-O-benzoyl-1-seleno-beta-D-glucopyranoside, phenyl-2,3,4,6-tetra-O-benzyl-1-seleno-beta-D-glucopyranoside, phenyl-2,3,4,6-tetra-O-benzyl-1-thio-beta-D-glucopyranoside, p-tolyl-2,3,4,6-O-benzoyl-1-thio-beta-D-glucopyranoside, p-tolyl-2,3,4,6-O-benzyl-1-thio-beta-D-glucopyranoside, and phenyl-2,3,4,6-O-benzyl-beta-D-glucopyranoside) are voltammetrically interrogated in dimethyl sulfoxide, so as to determine their formal (i.e. thermodynamic) redox potentials. The electrochemical oxidation of the chalcoglycoside is shown to follow an overall EC-type mechanism, in which the electro-generated cation radical undergoes an irreversible carbon-chalcogen bond rupture to produce the corresponding glycosyl cation, which may react further. The kinetics of the initial heterogeneous electron transfer process and subsequent irreversible homogeneous chemical degradation of the radical cation are reported, with values for the standard electrochemical rate constant k(0) in the order of 10(-2) cm s(-1) and the first order homogeneous rate constant, k(1), of the order of 10(3) s(-1). The formal oxidation potentials were found to vary according to the identity of the chalcogenide, such that OPh > SPh similar to STol > SePh.


Subject(s)
Glycosides/chemistry , Oligosaccharides/chemistry , Cations , Electrochemistry , Glycosides/metabolism , Kinetics , Oxidation-Reduction , Thermodynamics
3.
Org Biomol Chem ; 2(15): 2195-202, 2004 Aug 07.
Article in English | MEDLINE | ID: mdl-15280955

ABSTRACT

Electrochemical glycosylation of a selenoglycoside donor proceeds efficiently in an undivided cell in acetonitrile to yield beta-glycosides. Measurement of cyclic voltammograms for a selection of seleno-, thio-, and O-glycosides indicates the dependence of oxidation potential on the anomeric substituent allowing the possibility for the rapid construction of oligosaccharides by selective electrochemical activation utilising variable cell potentials in combination with reactivity tuning of the glycosyl donor. A variety of disaccharides are readily synthesised in high yield, but limitations of the use of selenoglycosides as glycosyl donors for selective glycosylation of thioglycoside acceptors are exposed. The first electrochemical trisaccharide synthesis is described.


Subject(s)
Glycosides/chemistry , Trisaccharides/chemical synthesis , Electrochemistry , Glycosylation , Models, Chemical , Selenium/chemistry , Sulfhydryl Compounds/chemistry , Thioglycosides/chemistry
4.
Carbohydr Res ; 338(19): 1937-49, 2003 Sep 10.
Article in English | MEDLINE | ID: mdl-14499570

ABSTRACT

The fluorescence-labelled disaccharides Glcalpha(1-->3)GlcalphaOR and Glcalpha(1-->3)ManalphaOR, both substrates for the glycoprotein-processing enzyme glucosidase II, were synthesised via the use of a n-pentenyl-derived linker at the anomeric position. This allowed incorporation of a pyrenebutyric acid label, via a sequence of oxidative hydroboration, mesylation, azide displacement, reduction with concomitant global deprotection, and peptide coupling. Selective activation of a fully armed thioglycoside in the presence of n-pentenyl glycosides was readily achieved by the use of methyl triflate as promoter.


Subject(s)
Disaccharides/chemical synthesis , Disaccharides/metabolism , alpha-Glucosidases/metabolism , Animals , Carbohydrate Sequence , Chromatography, High Pressure Liquid , Disaccharides/chemistry , Fluorescence , Liver/metabolism , Molecular Sequence Data , Molecular Structure , Rats
5.
J Am Chem Soc ; 125(37): 11418-29, 2003 Sep 17.
Article in English | MEDLINE | ID: mdl-16220965

ABSTRACT

The electro-oxidation of electrolytically unsupported ensembles of N,N-diethyl-N',N'-dialkyl-para-phenylenediamine (DEDRPD, R = n-butyl, n-hexyl, and n-heptyl) redox liquid femtoliter volume droplets immobilized on a basal plane pyrolytic graphite electrode is reported in the presence of aqueous electrolytes. Electron transfer at these redox liquid modified electrodes is initiated at the microdroplet-electrode-electrolyte three-phase boundary. Dependent on both the lipophilicity of the redox oil and that of the aqueous electrolyte, ion uptake into or expulsion from the organic deposits is induced electrolytically. In the case of hydrophobic electrolytes, redox-active ionic liquids are synthesized, which are shown to catalyze the oxidation of l-ascorbic acid over the surface of the droplets. In contrast, the photoelectrochemical reduction of the anaesthetic reagent halothane proceeds within the droplet deposits and is mediated by the ionic liquid precursor (the DEDRPD oil).

SELECTION OF CITATIONS
SEARCH DETAIL
...