Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22276509

ABSTRACT

BackgroundOmicron variant questioned the efficacy of the approved therapies for the early COVID-19. I In vitro data show retained neutralizing activity against BA.1 and BA.2 for remdesivir (RDV), molnupiravir (MLN), and nirmatrelvir/ritonavir (NRM/r), while poor efficacy for Sotrovimab (STR) against BA.2. No data about the risk of clinical failure and in vivo antiviral activity are available. Material and methodsSingle-center observational comparison study enrolling all consecutive patients with a confirmed SARS-CoV-2 Omicron (BA.1 or BA.2) diagnosis and who met eligibility criteria for treatment with RDV, MLN, NRM/r, or STR. Treatment allocation was subject to drug availability, time from symptoms onset, and comorbidities. Patients were followed through day 30. Nasopharyngeal swab (NPS) VL was measured on day 1 (D1) and D7 and was expressed by log2 cycle threshold (CT) scale. Comparisons between groups were made by Chi-square and Wilcoxon paired-test. Primary endpoint was D1-D7 VL variation. Potential decrease in VL and average treatment effect (ATE) were calculated from fitting marginal linear regression models weighted for calendar month of infusion, duration of symptoms, and immunodeficiency. Secondary endpoints were the proportion of D7 undetectable VL in NPS and clinical outcomes compared by treatment groups using a Chi-square test. ResultsA total of 521 pts received treatments (STR 202, MLN 117, NRM/r 84, and RDV 118): female 250 (48%), median age 66 yrs (IQR 55-76), 90% vaccinated; 15% with negative baseline serology. At D1, median time from symptoms onset was 3 days (2,4). 378 (73%) pts were infected with BA.1 and 143 (27%) with BA.2. D1 mean viral load was 4.12 log2 (4.16 for BA.1 and 4.01 for BA.2). The adjusted analysis showed that NRM/r significantly reduced VL compared to all the other drugs in pts infected with BA.1 while no evidence for a difference vs. MLP was seen in those infected with BA.2. MLN had comparable activity to STR against BA.1 and to NRM/r against BA.2. There was no significant difference between STR and RDV for BA.2. At D7, 35/521 (6.7%) pts had undetectable VL. Of these, 31 were infected with BA.1 [9 (9%) MLN, 7 (14%) NRM/r, 7 (8%) RDV, and 8 (5%) STR)], and only 4 with BA.2, all treated with NRM/r. After 30 days of follow-up, 9/568 pts experienced COVID-19-related clinical failure [7/226 STR (5 BA.1) and 2/87 NRM /r (2 BA.1)]. ConclusionsIn this analysis of in vivo early VL reductions, NRM/r appears to be the drug showing the greatest antiviral activity regardless of the VoC, together with MLN, although the latter limited to people with BA.2. In the Omicron era, due to the high prevalence of vaccinated people and the lower probability of hospital admission, VL decrease can be a valuable surrogate of drug activity.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-22270143

ABSTRACT

ObjectivesComparative analysis between different monoclonal antibodies (mAbs) against SARS-CoV-2 are lacking. We present an emulation trial from observational data to compare effectiveness of Bamlanivimab/Etesevimab (BAM/ETE) and Casirivimab/Imdevimab (CAS/IMD) in outpatients with early mild-to-moderate COVID-19 in a real-world scenario of variants of concern (VoCs) from Alpha to Delta. MethodsAllocation to treatment was subject to mAbs availability, and the measured factors were not used to determine which combination to use. Patients were followed through day 30. Viral load was measured by cycle threshold (CT) on D1 (baseline) and D7. Primary outcome was time to COVID-19-related hospitalization or death from any cause over days 0-30. Weighted pooled logistic regression and marginal structural Cox model by inverse probability weights were used to compare BAM/ETE vs. CAS/IMD. ANCOVA was used to compare mean D7 CT values by intervention. Models were adjusted for calendar month, MASS score and VoCs. We evaluated effect measure modification by VoCs, vaccination, D1 CT levels and enrolment period. ResultsCOVID19-related hospitalization or death from any cause occurred in 15 of 237 patients in the BAM/ETE group (6.3%) and in 4 of 196 patients in the CAS/IMD group (2.0%) (relative risk reduction [1 minus the relative risk] 72%; p=0.024). Subset analysis carried no evidence that the effect of the intervention was different across stratification factors. There was no evidence in viral load reduction from baseline through day 7 across the two groups (+0.17, 95% -1.41;+1.74, p=0.83). Among patients who experienced primary outcome, none showed a negative RT-PCR test in nasopharingeal swab (p=0.009) and 82.4% showed still high viral load (p<0.001) on D7. ConclusionsIn a pre-Omicron epidemiologic scenario, CAS/IMD reduced risk of clinical progression of COVID-19 compared to BAM/ETE. This effect was not associated with a concomitant difference in virological response.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-22269335

ABSTRACT

The new variant Omicron (B.1.1.529) of SARS-CoV-2, first identified in November 2021, is rapidly spreading all around the world. The Omicron becomes the dominant variant of SARS-CoV-2. There are many ongoing studies evaluating the effectiveness of existing vaccines. Studies on neutralizing activity of vaccinated sera against Omicron variant are currently being carried out in many laboratories. In this study, we have shown the neutralizing activity of sera against SARS-CoV-2 Omicron (B.1.1.529) variant compared to the reference Wuhan D614G (B.1) variant in individuals vaccinated with 2 doses of Sputnik V or BNT162b2 in different time points up to 6 months after vaccination. We performed analysis on sample pools with comparable NtAb to Wuhan D614G variant. The decrease in neutralizing antibody (NtAb) to the Omicron variant was 8.1 folds for group of Sputnik V-vaccinated and 21.4 folds for group of BNT162b2-vaccinated. Analysis showed that 74.2% of Sputnik V- and 56.9% of BNT162b2-vaccinated sera had detectable NtAb to SARS-CoV-2 Omicron variant. The decrease in NtAb to SARS-CoV-2 Omicron variant compared to Wuhan variant has been shown for many COVID-19 vaccines in use, with some showing no neutralization at all. Today the necessity of third booster vaccination is obvious. And the most effective approach, already shown in several studies, is the use of heterologous booster vaccination pioneered in COVID-19 vaccines by Sputnik V.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-21263882

ABSTRACT

Coronavirus disease 2019 (COVID-19) vaccines are proving to be very effective in preventing severe illness; however, although rare, post-vaccine infections have been reported. The present study describes 94 infections (47.9% symptomatic, 52.1% asymptomatic), occurred in Lazio Region (Central Italy) in the first trimester 2021, after first or second dose of mRNA BNT162b2 vaccine. Median viral load at diagnosis was independent from number and time of vaccine dose administration, despite the higher proportion of samples with low viral load observed in fully vaccinated individuals. More importantly, infectious virus was cultured from NPS collected from both asymptomatic and symptomatic vaccinated individuals, suggesting that, at least in principle, they can transmit the infection to susceptible people. The majority of the post-vaccine infections here reported, showed pauci/asymptomatic clinical course, confirming the impact of vaccination on COVID-19 disease. Most cases (78%) showed infection in presence of neutralizing antibodies at the time of infection diagnosis, presumably attributable to vaccination, due to the concomitant absence of anti-N IgG in most cases. The proportion of post-vaccine infections attributed either to Alpha and Gamma VOCs was similar to the proportion observed in the contemporary unvaccinated population in Lazio region. In addition, mutational analysis did not suggest enrichment of a defined set of Spike protein substitutions depending on the vaccination status. Characterization of host and virus factors associated with vaccine breakthrough, coupled with intensive and continuous monitoring of involved viral strains, is crucial to adopt informed vaccination strategies.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-448343

ABSTRACT

The COVID-19 pandemic caused by the {beta}-coronavirus SARS-CoV-2 has made the development of safe and effective vaccines a critical global priority. To date, four vaccines have already been approved by European and American authorities for preventing COVID-19 but the development of additional vaccine platforms with improved supply and logistics profiles remains a pressing need. Here we report the preclinical evaluation of a novel COVID-19 vaccine candidate based on the electroporation of engineered, synthetic cDNA encoding a viral antigen in the skeletal muscle, a technology previously utilized for cancer vaccines. We constructed a set of prototype DNA vaccines expressing various forms of the SARS-CoV-2 Spike (S) protein and assessed their immunogenicity in animal models. Among them, COVID-eVax - a DNA plasmid encoding a secreted monomeric form of SARS-CoV-2 S protein RBD - induced the most potent anti-SARS-CoV-2 neutralizing antibody responses (including against the current most common variants of concern) and a robust T cell response. Upon challenge with SARS-CoV-2, immunized K18-hACE2 transgenic mice showed reduced weight loss, improved pulmonary function and significantly lower viral replication in the lungs and brain. COVID-eVax conferred significant protection to ferrets upon SARS-CoV-2 challenge. In summary, this study identifies COVID-eVax as an ideal COVID-19 vaccine candidate suitable for clinical development. Accordingly, a combined phase I-II trial has recently started in Italy.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-362848

ABSTRACT

Neutralizing antibodies (nAbs) hold promise as effective therapeutics against COVID-19. Here, we describe protein engineering and modular design principles that have led to the development of synthetic bivalent and tetravalent nAbs against SARS-CoV-2. The best nAb targets the host receptor binding site of the viral S-protein and its tetravalent versions can block entry with a potency that exceeds the bivalent nAbs by an order of magnitude. Structural studies show that both the bivalent and tetravalent nAbs can make multivalent interactions with a single S-protein trimer, observations consistent with the avidity and potency of these molecules. Significantly, we show that the tetravalent nAbs show much increased tolerance to potential virus escape mutants. Bivalent and tetravalent nAbs can be produced at large-scale and are as stable and specific as approved antibody drugs. Our results provide a general framework for developing potent antiviral therapies against COVID-19 and related viral threats, and our strategy can be readily applied to any antibody drug currently in development.

7.
Preprint in English | medRxiv | ID: ppmedrxiv-20232728

ABSTRACT

COVID-19 pandemic is becoming one of the most dramatic health, social and economic global challenges in recent history. Testing is one of the main components of the public health response to contain the virus spreading. There is an urgent need to expand testing capacity and antigen rapid tests (Ag RDT) represent good candidates for point-of-care and mass surveillance testing to rapidly identify people with SARS-CoV-2 infection, counterbalancing lower sensitivity as compared to the gold standard molecular tests with timeliness of results and possibility of recurred testing. Here, we report preliminary data of the testing algorithm implemented at the points-of-entry (airports and port) in Lazio Region (Central Italy) on travelers arriving between 17th of August to 15th of October, 2020, using the STANDARD F COVID-19 Antigen Fluorescence ImmunoAssay. Our findings show that the probability of molecular confirmation of Ag RDT positive results is directly dependent from the semi-quantitative results of this Ag RDT, and that the molecularly confirmed samples actually harbor infectious virus. These results support the public health strategies based on early screening campaigns in settings where molecular testing is not feasible or easily accessible, using rapid and simple point of care tests, able to rapidly identify those subjects who are at highest risk of spreading SARS-CoV-2 infection.

8.
Preprint in English | medRxiv | ID: ppmedrxiv-20226423

ABSTRACT

Patients with severe respiratory syndrome caused by SARS-CoV-2 undergo cardiac complications due to hyper-inflammatory conditions. Although the presence of the virus has been detected in the myocardium of infected patients, and infection of cardiac cells may involve ACE2 receptor, the underlying molecular/cellular mechanisms are still uncharacterized. We analyzed expression of ACE2 receptor in primary human cardiac stromal cells using proteomic and transcriptomic methods before exposing them to SARS-CoV-2 in vitro. Using conventional and high sensitivity PCR methods, we measured virus production in the cellular supernatants and monitored the intracellular viral bioprocessing. We performed high-resolution imaging to show the sites of intracellular viral production. We finally used Q-RT-PCR assays to detect genes linked to innate immunity and fibrotic pathways coherently regulated in cells exposed to virus. Our findings indicate that human cardiac stromal cells have a susceptibility to SARS-CoV-2 infection and produce variable viral yields depending on the extent of cellular ACE2 receptor expression. Interestingly, these cells also evolved toward hyper-inflammatory/pro-fibrotic phenotypes independently of ACE2 levels, suggesting a dual cardiac damage mechanism that could account for the elevated numbers of cardiac complications in severe COVID-19 cases.

9.
Preprint in English | bioRxiv | ID: ppbiorxiv-137349

ABSTRACT

Coronaviruses (CoV) are a large family of enveloped, RNA viruses that circulate in mammals and birds. Three highly pathogenic strains have caused zoonotic infections in humans that result in severe respiratory syndromes including the Middle East Respiratory Syndrome CoV (MERS), Severe Acute Respiratory Syndrome CoV (SARS), and the ongoing Coronavirus Disease 2019 (COVID-19) pandemic. Here, we describe a panel of synthetic monoclonal antibodies, built on a human IgG framework, that bind to the spike protein of SARS-CoV-2 (the causative agent of COVID-19), compete for ACE2 binding, and potently inhibit SARS-CoV-2. All antibodies that exhibited neutralization potencies at sub-nanomolar concentrations against SARS-CoV-2/USA/WA1 in Vero E6 cells, also bound to the receptor binding domain (RBD), suggesting competition for the host receptor ACE2. These antibodies represent strong immunotherapeutic candidates for treatment of COVID-19.

10.
Preprint in English | medRxiv | ID: ppmedrxiv-20111682

ABSTRACT

Serological assays for anti-SARS-CoV-2 antibodies are now of critical importance to support diagnosis, guide epidemiological intervention, and understand immune response to natural infection and vaccine administration. We developed and validated new anti-SARS-CoV-2 IgG, IgM and IgA ELISA tests (ENZY-WELL SARS-CoV-2 ELISA, DIESSE Diagnostica Senese S.p.a.) based on whole-virus antigens. We used a total of 553 serum samples including samples from COVID-19 suspected and confirmed cases, healthy donors, and patients positive for other infections or autoimmune conditions. Overall, the assays showed good concordance with the indirect immunofluorescence reference test in terms of sensitivity and specificity. Especially for IgG and IgA, we observed high sensitivity (92.5 and 93.6%, respectively); specificity was high (>96%) for all antibody types ELISAs. In addition, sensitivity was linked to the days from symptoms onset (DSO) due to the seroconversion window, and for ENZY-WELL SARS-CoV-2 IgG and IgA ELISAs resulted 100% in those samples collected after 10 and 12 DSO, respectively. The results showed that ENZY-WELL SARS-CoV-2 ELISAs may represent a valid option for both diagnostic and epidemiological purposes, covering all different antibody types developed in SARS-CoV-2 immune response.

SELECTION OF CITATIONS
SEARCH DETAIL
...