Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Opt Express ; 23(7): 8583-9, 2015 Apr 06.
Article in English | MEDLINE | ID: mdl-25968696

ABSTRACT

Unambiguous identification of low concentration chemical mixtures can be performed by broadband enhanced infrared absorption (BEIRA). Here we propose and numerically study a corrugated parallel plate waveguide (CPPW) with gradient grooves which is capable of directly converting transmission modes to surface plasmon modes and could hence serve as a powerful chemical sensor. Such a waveguide can be designed to exhibit a wide pass band covering an extended portion of a molecule absorption spectrum. Broadband sensing of toluene and ethanol thin layers is demonstrated by calculating the transmission coefficient of the waveguide and is shown to correspond exactly to their infrared spectra. In addition, the upper limit and the lower limit of the bandgap are mainly dependent on the minimum and maximum groove height, respectively, which provide an effective way of tuning the working frequency of the device in order to support surface plasmon modes within a desired frequency range according to a specific application.

2.
Opt Express ; 23(3): 3209-20, 2015 Feb 09.
Article in English | MEDLINE | ID: mdl-25836179

ABSTRACT

The small size of plasmonic nanostructures compared to the wavelength of light is one of their most distinct and defining characteristics. It results in the strong compression of an incident wave to intense hot spots which have been used most remarkably for molecular sensing and nanoscale lasers. But another important direction for research is to use this ability to design miniaturized interconnects and modulators between fast, loss-less photonic components. Here we show that despite their high absorption, conductors are still the best materials to reach the sub-wavelength regime for efficient antennae when compared to polar crystals and high-index dielectrics, two classes of material which have shown a lot of potential recently in nanophotonic applications. By identifying the relevant dimensionless properties for the three materials considered, we present an unified understanding of the behaviour of sub-wavelength components which are at the heart of current photonic research and cast the upper achievable limits for radiative antennae crucial to the development of real-life implementation.

3.
Nano Lett ; 15(5): 3458-64, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25915785

ABSTRACT

Hybrid plasmonic metal-graphene systems are emerging as a class of optical metamaterials that facilitate strong light-matter interactions and are of potential importance for hot carrier graphene-based light harvesting and active plasmonic applications. Here we use femtosecond pump-probe measurements to study the near-field interaction between graphene and plasmonic gold nanodisk resonators. By selectively probing the plasmon-induced hot carrier dynamics in samples with tailored graphene-gold interfaces, we show that plasmon-induced hot carrier generation in the graphene is dominated by direct photoexcitation with minimal contribution from charge transfer from the gold. The strong near-field interaction manifests as an unexpected and long-lived extrinsic optical anisotropy. The observations are explained by the action of highly localized plasmon-induced hot carriers in the graphene on the subresonant polarizability of the disk resonator. Because localized hot carrier generation in graphene can be exploited to drive electrical currents, plasmonic metal-graphene nanostructures present opportunities for novel hot carrier device concepts.

4.
Nat Commun ; 5: 5221, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25323633

ABSTRACT

Strongly anisotropic media, where the principal components of the dielectric tensor have opposite signs, are called hyperbolic. Such materials exhibit unique nanophotonic properties enabled by the highly directional propagation of slow-light modes localized at deeply sub-diffractional length scales. While artificial hyperbolic metamaterials have been demonstrated, they suffer from high plasmonic losses and require complex nanofabrication, which in turn induces size-dependent limitations on optical confinement. The low-loss, mid-infrared, natural hyperbolic material hexagonal boron nitride is an attractive alternative. Here we report on three-dimensionally confined 'hyperbolic polaritons' in boron nitride nanocones that support four series (up to the seventh order) modes in two spectral bands. The resonant modes obey the predicted aspect ratio dependence and exhibit high-quality factors (Q up to 283) in the strong confinement regime (up to λ/86). These observations assert hexagonal boron nitride as a promising platform for studying novel regimes of light-matter interactions and nanophotonic device engineering.

5.
Opt Express ; 22(8): 9107-14, 2014 Apr 21.
Article in English | MEDLINE | ID: mdl-24787800

ABSTRACT

Wave interference is a fundamental physical phenomenon. Traditionally, the coherent effect of two identical point sources only takes place when the optical path is an integer number of wavelengths. In this paper, we show that mu and epsilon near zero (MENZ) metamaterials can be used to realize a perfectly constructive and isotropic interference. No matter how many point sources are embedded in the MENZ region, the wavefronts overlap perfectly. This translates into a total relaxation of the conventional condition for coherence enabled by the apparent infinite wavelength of the fields within MENZ metamaterials. Furthermore, we investigate crucial parameters such as the shape and size of the MENZ region. We demonstrate that flat sided geometries give rise to constructive interference beams serving as a powerful design mean. We also reveal the importance of relying on deeply sub-wavelength MENZ volumes as larger sizes increase the impedance and therefore reduce the output power of the device. The proposed concepts bear significance for current trends in antenna design which are inspired by the recent developments of electromagnetic metamaterials. Moreover, the perfect coherence effect can be appealing for power combiners, especially in the terahertz where sources are dim, as the irradiation intensity scales with the square of the number of embedded sources.

6.
Small ; 10(3): 576-83, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24000095

ABSTRACT

It is demonstrated herein both theoretically and experimentally that Young's interference can be observed in plasmonic structures when two or three nanoparticles with separation on the order of the wavelength are illuminated simultaneously by a plane wave. This effect leads to the formation of intermediate-field hybridized modes with a character distinct of those mediated by near-field and/or far-field radiative effects. The physical mechanism for the enhancement of absorption and scattering of light due to plasmonic Young's interference is revealed, which we explain through a redistribution of the Poynting vector field and the formation of near-field subwavelength optical vortices.


Subject(s)
Elementary Particles , Nanoparticles/chemistry , Scattering, Radiation , X-Ray Diffraction , Absorption , Dimerization , Nanoparticles/ultrastructure , Spectrometry, Fluorescence , Thermodynamics
7.
Nano Lett ; 13(8): 3690-7, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23815389

ABSTRACT

Plasmonics provides great promise for nanophotonic applications. However, the high optical losses inherent in metal-based plasmonic systems have limited progress. Thus, it is critical to identify alternative low-loss materials. One alternative is polar dielectrics that support surface phonon polariton (SPhP) modes, where the confinement of infrared light is aided by optical phonons. Using fabricated 6H-silicon carbide nanopillar antenna arrays, we report on the observation of subdiffraction, localized SPhP resonances. They exhibit a dipolar resonance transverse to the nanopillar axis and a monopolar resonance associated with the longitudinal axis dependent upon the SiC substrate. Both exhibit exceptionally narrow linewidths (7-24 cm(-1)), with quality factors of 40-135, which exceed the theoretical limit of plasmonic systems, with extreme subwavelength confinement of (λ(res)3/V(eff))1/3 = 50-200. Under certain conditions, the modes are Raman-active, enabling their study in the visible spectral range. These observations promise to reinvigorate research in SPhP phenomena and their use for nanophotonic applications.

8.
Phys Chem Chem Phys ; 15(15): 5395-9, 2013 Apr 21.
Article in English | MEDLINE | ID: mdl-23400254

ABSTRACT

In this article, we use optical transmission spectroscopy to measure the changes in the resonance features of a Au plasmonic nanoresonator array consisting of concentric ring/disc cavity elements, when graphene is introduced as an encapsulating medium. We show that by using finite element modelling to best reproduce our experimental results the dielectric response of the graphene film can be determined. We discuss the potential of such structures for chemical sensing applications.

9.
ACS Nano ; 6(2): 1830-8, 2012 Feb 28.
Article in English | MEDLINE | ID: mdl-22280066

ABSTRACT

We show in detail how a derivation of Fano theory can serve as a new paradigm to study, understand, and control the interaction of nano-objects with light. Examples include a plasmonic crystal, a dolmen-type structure sustaining dark and bright plasmon modes, and a nanoshell heptamer. On the basis of only three coupling factors, a straightforward analytical formula is obtained, only assuming a plasmonic resonance for the continuum, and retaining the nonclassical character of the original formalism. It allows one to predict, reproduce, or decompose Fano interferences solely in terms of the physical properties of the uncoupled nanostructures when available, without the need of additional fitting parameters.

11.
Nano Lett ; 11(7): 2835-40, 2011 Jul 13.
Article in English | MEDLINE | ID: mdl-21635012

ABSTRACT

The interaction between plasmonic resonances, sharp modes, and light in nanoscale plasmonic systems often leads to Fano interference effects. This occurs because the plasmonic excitations are usually spectrally broad and the characteristic narrow asymmetric Fano line-shape results upon interaction with spectrally sharper modes. By considering the plasmonic resonance in the Fano model, as opposed to previous flat continuum approaches, here we show that a simple and exact expression for the line-shape can be found. This allows the role of the width and energy of the plasmonic resonance to be properly understood. As examples, we show how Fano resonances measured on an array of gold nanoantennas covered with PMMA, as well as the hybridization of dark with bright plasmons in nanocavities, are well reproduced with a simple exact formula and without any fitting parameters.


Subject(s)
Surface Plasmon Resonance , Gold/chemistry , Light , Metal Nanoparticles/chemistry , Nanotechnology , Particle Size , Polymethyl Methacrylate/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...