Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Occup Environ Hyg ; 18(12): 547-554, 2021 12.
Article in English | MEDLINE | ID: mdl-34643481

ABSTRACT

Respirable Crystalline Silica (RCS) is a hazardous substance with known effects that can be well correlated with exposure levels that still persist in many traditional sectors, such as construction or stone processing. In the past decade, exposure scenarios for RCS have been found in the sector of artificial stone processing. The aim of this study is to evaluate the levels of RCS in facilities specialized in the production of artificial stone countertops and other accessories for the furnishing of kitchens, bathrooms, and offices after the introduction of some preventive technical measures such as wet processing or local exhaust ventilation systems. The study involved 51 subjects in four facilities. Personal silica exposure assessment was carried out using GS3 cyclones positioned in the breathing zone during the work shift. Quantitative determination of silica was carried out by X-ray diffraction analysis. Respirable dust levels were in the range 0.046-1.154 mg/m3 with RCS levels within the range <0.003-0.098 mg/m3. The highest exposure was found in dry finishing operations. Although there was a remarkable reduction in RCS exposure levels compared to what was observed in the past before the introduction of preventive measures, the data still showed hazardous exposure levels for some of the monitored activities.


Subject(s)
Air Pollutants, Occupational , Occupational Exposure , Air Pollutants, Occupational/analysis , Dust/analysis , Humans , Inhalation Exposure/analysis , Occupational Exposure/analysis , Silicon Dioxide/analysis
2.
Front Oncol ; 10: 596040, 2020.
Article in English | MEDLINE | ID: mdl-33585212

ABSTRACT

BACKGROUND: Mechanisms underlying hepatocellular carcinoma (HCC) development are largely unknown. The role of trace elements and proteins regulating metal ions homeostasis, i.e. metallothioneins (MTs), recently gained an increased interest. Object of the study was to investigate the role of promoter DNA methylation in MTs transcriptional regulation and the possible prognostic significance of serum trace elements in HCC. METHODS: Forty-nine HCC patients were enrolled and clinically characterized. Cu, Se, and Zn contents were measured by Inductively Coupled Plasma Mass Spectrometry in the serum and, for a subset of 27 patients, in HCC and homologous non-neoplastic liver (N) tissues. MT1G and MT1H gene expression in hepatic tissues was assessed by Real-Time RT-PCR and the specific promoter DNA methylation by Bisulfite-Amplicon Sequencing. RESULTS: Patients with Cu serum concentration above the 80th percentile had a significantly decreased survival rate (P < 0.001) with a marked increased hazard ratio for mortality (HR 6.88 with 95% CI 2.60-18.23, P < 0.001). Se and Zn levels were significantly lower in HCC as compared to N tissues (P < 0.0001). MT1G and MT1H gene expression was significantly down-regulated in HCC as compared to N tissues (P < 0.05). MTs promoter was hypermethylated in 9 out of the 19 HCC tissues showing MTs down-regulation and methylation levels of three specific CpGs paralleled to an increased mortality rate among the 23 patients analyzed (P = 0.015). CONCLUSIONS: MT1G and MT1H act as potential tumor suppressor genes regulated through promoter DNA methylation and, together with serum Cu concentrations, be related to survival rate in HCC.

3.
Eur J Clin Invest ; 48(2): e12870, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29235098

ABSTRACT

BACKGROUND: The liver hormone hepcidin regulates iron homoeostasis that is often altered in hepatocellular carcinoma (HCC). Epigenetic phenomena control gene expression through a dynamic fashion; therefore, considering the plasticity of both iron homoeostasis and epigenetic mechanisms and their role in liver carcinogenesis, we investigated whether hepcidin gene (HAMP) expression is modulated by DNA methylation, thus affecting iron status in human HCC. MATERIALS AND METHODS: Thirty-two patients affected by nonviral HCC were enrolled, and their main clinical and biochemical characteristics were obtained. Neoplastic and homologous non-neoplastic liver tissues were analysed for HAMP promoter DNA methylation, for HAMP gene expression and for iron content. An in vitro demethylation assay with a human hepatocarcinoma cell line was performed to evaluate the role of DNA methylation on HAMP transcriptional repression. RESULTS: Gene expression and DNA methylation analyses on tissues showed that HAMP was transcriptionally repressed in HCC tissues consensually with a promoter hypermethylation. Furthermore, patients with HCC had low serum hepcidin concentrations, and HCC tissues had relative iron depletion as compared to non-neoplastic liver tissues. The cell culture model showed the functional role of DNA hypermethylation by downregulating HAMP gene expression. Through a quantitative methylation analysis on HCC tissues, we then proved that methylation at definite CpG sites within consensus sequences for specific transcription factors is possibly the mechanism underlying HAMP repression. CONCLUSIONS: This study highlights a novel role for HAMP downregulation through DNA promoter hypermethylation and emphasises the significance of epigenetics in the regulation of iron metabolism in HCC.


Subject(s)
Carcinoma, Hepatocellular/metabolism , DNA Methylation/physiology , Hepcidins/metabolism , Liver Neoplasms/metabolism , Promoter Regions, Genetic/physiology , Aged , Analysis of Variance , Cation Transport Proteins/metabolism , Down-Regulation/physiology , Female , Gene Expression/physiology , Hepcidins/genetics , Humans , Iron Deficiencies , Male , Membrane Proteins/metabolism , Serine Endopeptidases/metabolism , Transcription, Genetic/physiology
4.
Int Arch Occup Environ Health ; 90(2): 243-254, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28078438

ABSTRACT

PURPOSE: The main aim of this study was to investigate the cobalt (Co) concentrations in urine along 4 months and their relationship with Co concentrations in blood and haemoglobin (adducts) in 34 workers from a hard metal manufacturing plant where metallic Co and Co oxide were used. Furthermore, the excretion kinetics of Co was investigated and the half-lives of Co in blood, plasma and urine were calculated along 18 days of non-exposure in the same workers. METHODS: Co was analysed, in all biological samples, by ICP/MS. RESULTS: Wide fluctuations in the urinary Co concentration were observed throughout the work shift and during the work week. A highly significant linear correlation was found between Co concentration (geometrical mean) in urine samples provided each Thursday (end shift) during 16 subsequent weeks and levels of Co-haemoglobin adducts or blood Co concentrations at the end of the same period. The Co elimination kinetics in globin calculated along 18 days without Co exposure was slow, being related to the physiological metabolism of haemoglobin, while in blood, plasma and urine Co half-lives were 12.3, 9.1 and 5.3 days, respectively. CONCLUSION: Co concentrations in haemoglobin or blood are highly related to the geometrical mean concentration of urinary Co when samples are collected weekly for several subsequent weeks. The biological monitoring of occupational exposure to Co in hard metal facilities provides reliable results by using the Co concentrations in haemoglobin or in whole blood. The urinary findings, though, do not show the same reliability because of their wide daily and weekly fluctuations.


Subject(s)
Cobalt/blood , Cobalt/urine , Environmental Monitoring/methods , Hemoglobins/metabolism , Metallurgy , Occupational Exposure/analysis , Adult , Cobalt/metabolism , Female , Humans , Male , Mass Spectrometry , Middle Aged , Oxides
SELECTION OF CITATIONS
SEARCH DETAIL
...