Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 5(1): 365, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440753

ABSTRACT

Polluted sites are ubiquitous worldwide but how plant partition their biomass between different organs in this context is unclear. Here, we identified three possible drivers of biomass partitioning in our controlled study along pollution gradients: plant size reduction (pollution effect) combined with allometric scaling between organs; early deficit in root surfaces (pollution effect) inducing a decreased water uptake; increased biomass allocation to roots to compensate for lower soil resource acquisition consistent with the optimal partitioning theory (plant response). A complementary meta-analysis showed variation in biomass partitioning across published studies, with grass and woody species having distinct modifications of their root: shoot ratio. However, the modelling of biomass partitioning drivers showed that single harvest experiments performed in previous studies prevent identifying the main drivers at stake. The proposed distinction between pollution effects and plant response will help to improve our knowledge of plant allocation strategies in the context of pollution.


Subject(s)
Plant Roots , Plants , Biomass , Environmental Pollution , Soil
2.
Sci Rep ; 6: 31495, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27527125

ABSTRACT

Microbialites are widespread in modern and fossil hypersaline environments, where they provide a unique sedimentary archive. Authigenic mineral precipitation in modern microbialites results from a complex interplay between microbial metabolisms, organic matrices and environmental parameters. Here, we combined mineralogical and microscopic analyses with measurements of metabolic activity in order to characterise the mineralisation of microbial mats forming microbialites in the Great Salt Lake (Utah, USA). Our results show that the mineralisation process takes place in three steps progressing along geochemical gradients produced through microbial activity. First, a poorly crystallized Mg-Si phase precipitates on alveolar extracellular organic matrix due to a rise of the pH in the zone of active oxygenic photosynthesis. Second, aragonite patches nucleate in close proximity to sulfate reduction hotspots, as a result of the degradation of cyanobacteria and extracellular organic matrix mediated by, among others, sulfate reducing bacteria. A final step consists of partial replacement of aragonite by dolomite, possibly in neutral to slightly acidic porewater. This might occur due to dissolution-precipitation reactions when the most recalcitrant part of the organic matrix is degraded. The mineralisation pathways proposed here provide pivotal insight for the interpretation of microbial processes in past hypersaline environments.


Subject(s)
Chemical Phenomena , Cyanobacteria/metabolism , Geologic Sediments/microbiology , Inorganic Chemicals/metabolism , Lakes/microbiology , Minerals/metabolism , Organic Chemicals/metabolism , Cyanobacteria/chemistry , Utah
3.
J Contam Hydrol ; 116(1-4): 1-15, 2010 Jul 30.
Article in English | MEDLINE | ID: mdl-20658756

ABSTRACT

Groundwaters impacted by mature landfill leachate are generally enriched in ammonium. In order to assess the dynamics of ammonium exchanges between leachates and the water system inside a sandy permeable catchment we measured ammonium, nitrate and chloride concentrations in the stream and in sediment pore waters of the streambed of a landfill impacted aquifer. Geophysical investigation methods complemented the biogeochemical survey. The studied zone is a 23 km(2) catchment located in a coastal lagoon area sensitive to eutrophication risk. Ammonium concentrations in the river were up to 800 micromol l(-1) during low water period in summer. Three surveys of the river chemistry showed a regular increase in ammonium, nitrate and chloride concentrations along a 1 km section of the watercourse, downstream the landfill, implying that the leachate plume exfiltrates along this section. Sediment cores collected within this section showed all an increase in ammonium concentrations with depth in pore waters as a consequence of the landfill leachate dispersion, as attested by a simultaneous increase in chloride concentrations. Nitrate enrichment in the river water was due to nitrification of ammonium at the interface between groundwater and streamwater. The apparent nitrification rate obtained was within values reported for turbid estuaries, although the river contained very little suspended particulate matter. Actually, pore water chemistry suggests that nitrification occurred for the most part in subsurface permeable sediments, rather than in stream water. The overall topographic, hydrological, geochemical, and geoelectrical data set permit to estimate the extension of the chloride and ammonium plume. The estimation of the apparent ammonium plume velocity is 23 m year(-1) whereas the chloride plume velocity should be 50 m year(-1). The river is the outlet of the impacted groundwaters. Considering that the input of ammonium from the landfill is balanced by the present day output via the river, the residence time of ammonium in the aquifer is between 7 and 18 years.


Subject(s)
Environmental Monitoring , Refuse Disposal , Rivers/chemistry , Water Pollutants, Chemical/analysis , Water Supply , Chlorides/analysis , France , Geologic Sediments/chemistry , Nitrates/analysis , Particulate Matter/analysis , Quaternary Ammonium Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...