Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
J Exp Bot ; 62(9): 3197-212, 2011 May.
Article in English | MEDLINE | ID: mdl-21325606

ABSTRACT

Genus Suaeda (family Chenopodiaceae, subfamily Suaedoideae) has two structural types of Kranz anatomy consisting of a single compound Kranz unit enclosing vascular tissue. One, represented by Suaeda taxifolia, has mesophyll (M) and bundle sheath (BS) cells distributed around the leaf periphery. The second, represented by Suaeda eltonica, has M and BS surrounding vascular bundles in the central plane. In both, structural and biochemical development of C(4) occurs basipetally, as observed by analysis of the maturation gradient on longitudinal leaf sections. This progression in development was also observed in mid-sections of young, intermediate, and mature leaves in both species, with three clear stages: (i) monomorphic chloroplasts in the two cell types in younger tissue with immunolocalization and in situ hybridization showing ribulose bisphosphate carboxylase oxygenase (Rubisco) preferentially localized in BS chloroplasts, and increasing in parallel with the establishment of Kranz anatomy; (ii) vacuolization and selective organelle positioning in BS cells, with occurrence of phosphoenolpyruvate carboxylase (PEPC) and immunolocalization showing that it is preferentially in M cells; (iii) establishment of chloroplast dimorphism and mitochondrial differentiation in mature tissue and full expression of C(4) biochemistry including pyruvate, Pi dikinase (PPDK) and NAD-malic enzyme (NAD-ME). Accumulation of rbcL mRNA preceded its peptide expression, occurring prior to organelle positioning and differentiation. During development there was sequential expression and increase in levels of Rubisco and PEPC followed by NAD-ME and PPDK, and an increase in the (13)C/(12)C isotope composition of leaves to values characteristic of C(4) photosynthesis. The findings indicate that these two forms of NAD-ME type C(4) photosynthesis evolved in parallel within the subfamily with similar ontogenetic programmes.


Subject(s)
Chenopodiaceae/physiology , Photosynthesis/physiology , Carbon Isotopes/analysis , Chenopodiaceae/genetics , Chenopodiaceae/growth & development , Chenopodiaceae/ultrastructure , Chloroplasts/enzymology , Chloroplasts/ultrastructure , Gene Expression Regulation, Plant , Malate Dehydrogenase/metabolism , Mesophyll Cells/enzymology , Microscopy, Confocal , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Mitochondria/metabolism , Phosphoenolpyruvate Carboxylase/metabolism , Plant Leaves/enzymology , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Leaves/ultrastructure , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Shoots/ultrastructure , Pyruvate, Orthophosphate Dikinase/metabolism , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism
2.
Mol Biosyst ; 6(3): 499-515, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20174679

ABSTRACT

The interest in renewable, plant-derived, bioenergy/biofuels has resulted in a renaissance of plant cell-wall/lignin research. Herein, effects of modulating lignin monomeric compositions in a single plant species, Arabidopsis, are described. The earliest stage of putative "AcBr/Klason lignin" deposition was apparently unaffected by modulating p-coumarate 3-hydroxylase or ferulate 5-hydroxylase activities. This finding helps account for the inability of many other studies to fully suppress the reported putative levels of lignin deposition through monolignol biosynthesis manipulation, and also underscores limitations in frequently used lignin analytical protocols. The overall putative lignin content was greatly reduced (circa 62%) in a plant line harboring an H-(p-hydroxyphenyl) enriched lignin phenotype. This slightly increased H-monomer deposition level apparently occurred in cell-wall domains normally harboring guaiacyl (G) and/or syringyl (S) lignin moieties. For G- and S-enriched lignin phenotypes, the overall lignification process appeared analogous to wild type, with only xylem fiber and interfascicular fiber cells forming the S-enriched lignins. Laser microscope dissection of vascular bundles and interfascicular fibers, followed by pyrolysis GC/MS, supported these findings. Some cell types, presumably metaxylem and possibly protoxylem, also afforded small amounts of benzodioxane (sub)structures due to limited substrate degeneracy (i.e. utilizing 5-hydroxyconiferyl alcohol rather than sinapyl alcohol). For all plant lines studied, the 8-O-4' inter-unit frequency of cleavable H, G and/or S monomers was essentially invariant of monomeric composition for a given (putative) lignin content. These data again underscore the need for determination of lignin primary structures and identification of all proteins/enzymes involved in control of lignin polymer assembly/macromolecular configuration.


Subject(s)
Arabidopsis/chemistry , Cell Wall/chemistry , Lignin/chemistry , Plant Stems/chemistry , Arabidopsis/anatomy & histology , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Bioelectric Energy Sources , Cell Line , Cell Wall/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Gas Chromatography-Mass Spectrometry , Histocytochemistry , Lignin/biosynthesis , Lignin/genetics , Lignin/metabolism , Macromolecular Substances/chemistry , Microdissection , Microscopy, Ultraviolet , Models, Molecular , Molecular Conformation , Nuclear Magnetic Resonance, Biomolecular , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Stems/anatomy & histology , Plant Stems/cytology
3.
Gene ; 431(1-2): 80-5, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-19059315

ABSTRACT

Two putative Kunitz-type chymotrypsin inhibitor genes (WCI2 and WCI5) were isolated from winged bean (Psophocarpus tetragonolobus (L.) DC). While WCI2 has previously been characterized, WCI5 represents a new member of the WCI family. WCI5 was exclusively expressed in winged bean seeds. Theoretical translation of both the genes resulted into polypeptides of 207 amino acids with 86% sequence similarity. The polypeptide sequences contain four half-cysteine residues and a well-conserved Leu(65)-Ser(66) reactive site, typical for chymotrypsin inhibitors. WCI5 and WCI2 were expressed in Pichia pastoris and the recombinant proteins were assayed against various proteinases. Both the inhibitors strongly inhibited commercially available bovine chymotrypsin. More importantly, gut proteinases of Helicoverpa armigera larvae that damage many important crop plants, were inhibited by WCI2 and WCI5. In addition, both proteinase inhibitors demonstrated significant reduction of growth of H. armigera larvae after feeding on inhibitor incorporated artificial diets. The inhibitory effects of WCI2 and WCI5 on activity of proteinases and larval growth make these proteins and their genes promising candidates for enhancing plant defense against H. armigera using transgenic plants.


Subject(s)
Fabaceae/chemistry , Moths/drug effects , Moths/growth & development , Plant Proteins/pharmacology , Amino Acid Sequence , Animals , Chymotrypsin/antagonists & inhibitors , Digestive System/drug effects , Digestive System/enzymology , Feeding Behavior/drug effects , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Larva/drug effects , Larva/growth & development , Molecular Sequence Data , Plant Proteins/chemistry , Plant Proteins/genetics , Recombinant Proteins/metabolism , Seeds/drug effects , Seeds/genetics , Sequence Analysis, DNA , Trypsin/metabolism
4.
J Exp Bot ; 59(7): 1715-34, 2008.
Article in English | MEDLINE | ID: mdl-18390850

ABSTRACT

Among dicotyledon families, Chenopodiaceae has the most C(4) species and the greatest diversity in structural forms of C(4). In subfamily Salicornioideae, C(4) photosynthesis has, so far, only been found in the genus Halosarcia which is now included in the broadly circumscribed Tecticornia. Comparative anatomical, cytochemical, and physiological studies on these taxa, which have near-aphyllous photosynthetic shoots, show that T. pergranulata is C(3), and that two subspecies of T. indica (bidens and indica) are C(4) (Kranz-tecticornoid type). In T. pergranulata, the stems have two layers of chlorenchyma cells surrounding the centrally located water storage tissue. The two subspecies of T. indica have Kranz anatomy in reduced leaves and in the fleshy stem cortex. They are NAD-malic enzyme-type C(4) species, with mesophyll chloroplasts having reduced grana, characteristic of this subtype. The Kranz-tecticornoid-type anatomy is unique among C(4) types in the family in having groups of chlorenchymatous cells separated by a network of large colourless cells (which may provide mechanical support or optimize the distribution of radiation in the tissue), and in having peripheral vascular bundles with the phloem side facing the bundle sheath cells. Also, the bundle sheath cells have chloroplasts in a centrifugal position, which is atypical for C(4) dicots. Fluorescence analyses in fresh sections indicate that all non-lignified cell walls have ferulic acid, a cell wall cross-linker. Structural-functional relationships of C(4) photosynthesis in T. indica are discussed. Recent molecular studies show that the C(4) taxa in Tecticornia form a monophyletic group, with incorporation of the Australian endemic genera of Salicornioideae, including Halosarcia, Pachycornia, Sclerostegia, and Tegicornia, into Tecticornia.


Subject(s)
Chenopodiaceae/physiology , Photosynthesis/physiology , Carbon/metabolism , Cell Wall , Immunohistochemistry , Plant Epidermis/anatomy & histology , Plant Stems/cytology , Plant Stems/physiology , Ribulose-Bisphosphate Carboxylase/metabolism , Starch/metabolism
5.
Phytochemistry ; 68(14): 1957-74, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17467016

ABSTRACT

A major goal currently in Arabidopsis research is determination of the (biochemical) function of each of its approximately 27,000 genes. To date, however, 12% of its genes actually have known biochemical roles. In this study, we considered it instructive to identify the gene expression patterns of nine (so-called AtCAD1-9) of 17 genes originally annotated by The Arabidopsis Information Resource (TAIR) as cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1.195) homologues [see Costa, M.A., Collins, R.E., Anterola, A.M., Cochrane, F.C., Davin, L.B., Lewis N.G., 2003. An in silico assessment of gene function and organization of the phenylpropanoid pathway metabolic networks in Arabidopsis thaliana and limitations thereof. Phytochemistry 64, 1097-1112.]. In agreement with our biochemical studies in vitro [Kim, S.-J., Kim, M.-R., Bedgar, D.L., Moinuddin, S.G.A., Cardenas, C.L., Davin, L.B., Kang, C.-H., Lewis, N.G., 2004. Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis. Proc. Natl. Acad. Sci. USA 101, 1455-1460.], and analysis of a double mutant [Sibout, R., Eudes, A., Mouille, G., Pollet, B., Lapierre, C., Jouanin, L., Séguin A., 2005. Cinnamyl Alcohol Dehydrogenase-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell 17, 2059-2076.], both AtCAD5 (At4g34230) and AtCAD4 (At3g19450) were found to have expression patterns consistent with development/formation of different forms of the lignified vascular apparatus, e.g. lignifying stem tissues, bases of trichomes, hydathodes, abscission zones of siliques, etc. Expression was also observed in various non-lignifying zones (e.g. root caps) indicative of, perhaps, a role in plant defense. In addition, expression patterns of the four CAD-like homologues were investigated, i.e. AtCAD2 (At2g21730), AtCAD3 (At2g21890), AtCAD7 (At4g37980) and AtCAD8 (At4g37990), each of which previously had been demonstrated to have low CAD enzymatic activity in vitro (relative to AtCAD4/5) [Kim, S.-J., Kim, M.-R., Bedgar, D.L., Moinuddin, S.G.A., Cardenas, C.L., Davin, L.B., Kang, C.-H., Lewis, N.G., 2004. Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis. Proc. Natl. Acad. Sci. USA 101, 1455-1460.]. Neither AtCAD2 nor AtCAD3, however, were expressed in lignifying tissues, with the latter being found mainly in the meristematic region and non-lignifying root tips, i.e. indicative of involvement in biochemical processes unrelated to lignin formation. By contrast, AtCAD7 and AtCAD8 [surprisingly now currently TAIR-annotated as probable mannitol dehydrogenases, but for which there is still no biochemical or other evidence for same] displayed gene expression patterns largely resembling those of AtCAD4/5, i.e. indicative perhaps of a quite minor role in monolignol/lignin formation. Lastly, AtCAD1 (At1g72680), AtCAD6 (At4g37970) and AtCAD9 (At4g39330), which lacked detectable CAD catalytic activities in vitro, were also expressed predominantly in vascular (lignin-forming) tissues. While their actual biochemical roles remain unknown, definition of their expression patterns, nevertheless, now begins to provide useful insights into potential biochemical/physiological functions, as well as the cell types in which they are expressed. These data thus indicate that the CAD metabolic network is composed primarily of AtCAD4/5 and may provisionally, to a lesser extent, involve AtCAD7/8 based on in vitro catalytic properties and (promoter regions selected to obtain) representative gene expression patterns. This analysis has, therefore, enabled us to systematically map out bona fide CAD gene involvement in both the assembly and differential emergence of the various component parts of the lignified vascular apparatus in Arabidopsis, as well as those having other (e.g. putative plant defense) functions. The data obtained also further underscore the ongoing difficulties and challenges as regards current limitations in gene annotations versus actual determination of gene function. This is exemplified by the annotation of AtCAD2, 3 and 6-9 as purported mannitol dehydrogenases, when, for example, no in vitro studies have been carried out to establish such a function biochemically. Such annotations should thus be discontinued in the absence of reliable biochemical and/or other physiological confirmation. In particular, AtCAD2, 3, 6 and 9 should be designated as dehydrogenases of unknown function. Just as importantly, the different patterns of gene expression noted during distinct phases of growth and development in specific cells/tissues gives insight into the study of the roles that these promoters have.


Subject(s)
Alcohol Oxidoreductases/classification , Alcohol Oxidoreductases/metabolism , Arabidopsis/enzymology , Arabidopsis/growth & development , Databases, Genetic , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Alcohol Oxidoreductases/genetics , Arabidopsis/genetics , Base Sequence , Cotyledon/enzymology , Cotyledon/genetics , Cotyledon/growth & development , Flowers/enzymology , Flowers/genetics , Flowers/growth & development , Hypocotyl/enzymology , Hypocotyl/genetics , Hypocotyl/growth & development , Lignin/chemistry , Molecular Structure , Oligonucleotide Array Sequence Analysis , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Roots/enzymology , Plant Roots/genetics , Plant Roots/growth & development , Plants, Genetically Modified , Promoter Regions, Genetic/genetics
6.
Plant Physiol ; 143(1): 410-24, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17122070

ABSTRACT

In conifer stems, formation of chemical defenses against insects or pathogens involves specialized anatomical structures of the phloem and xylem. Oleoresin terpenoids are formed in resin duct epithelial cells and phenolics accumulate in polyphenolic parenchyma cells. Ethylene signaling has been implicated in the induction of these chemical defenses. Recently, we reported the cloning of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) from spruce (Picea spp.) and Douglas fir (Pseudotsuga menziesii). ACO protein was constitutively expressed in Douglas fir and only weakly induced upon wounding. We now cloned seven full-length and one near full-length cDNA representing four distinct 1-aminocyclopropane-1-carboxylic acid synthases (ACS; ACS1, ACS2, ACS3, and ACS4) from spruce and Douglas fir. Cloning of ACS has not previously been reported for any gymnosperm. Using gene-specific, quantitative real-time polymerase chain reaction, we measured constitutive expression for the four ACS genes and the single-copy ACO gene in various tissues of Sitka spruce (Picea sitchensis) and in white spruce (Picea glauca) somatic embryos. ACO and ACS4 were ubiquitously expressed at high levels; ACS1 was predominantly expressed in developing embryos and ACS2 and ACS3 were expressed only at very low levels. Insect attack or mechanical wounding caused strong induction of ACS2 and ACS3 in Sitka spruce bark, a moderate increase in ACO transcripts, but had no effect on ACS1 and ACS4. ACS protein was also strongly induced following mechanical wounding in Douglas fir and was highly abundant in resin duct epithelial cells and polyphenolic parenchyma cells. These results suggest that ACS, but not ACO, is a regulated step in ethylene-induced conifer defense.


Subject(s)
Lyases/metabolism , Multigene Family , Picea/enzymology , Plant Proteins/metabolism , Pseudotsuga/enzymology , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism , Amino Acid Sequence , Animals , Cloning, Molecular , DNA, Complementary/chemistry , Ethylenes/metabolism , Gene Expression Regulation, Plant , Lyases/genetics , Molecular Sequence Data , Phylogeny , Picea/genetics , Picea/physiology , Plant Proteins/genetics , Polymerase Chain Reaction , Pseudotsuga/genetics , Pseudotsuga/physiology , RNA, Messenger/metabolism , Sequence Alignment , Weevils/physiology
7.
Funct Plant Biol ; 34(4): 268-281, 2007 May.
Article in English | MEDLINE | ID: mdl-32689353

ABSTRACT

Leaves and cotyledons of the terrestrial C4 plants, Bienertia cycloptera Bunge ex Boiss. and Suaeda aralocaspica (Bunge) Freitag & Schütze (Chenopodiaceae), accomplish C4 photosynthesis within individual chlorenchyma cells: each species having a unique means of intracellular spatial partitioning of biochemistry and organelles. In this study the chlorenchyma tissue in flowers and stems of these species was investigated. Flowers have an outer whorl of green tepals with a layer of chlorenchyma cells, which are located on the abaxial side, exposed to the atmosphere. Anatomical, immunocytochemical, western blots and starch analyses show that the chlorenchyma cells in tepals are specialised for performance of single-cell C4 photosynthesis like that in leaves. In the tepals of B. cycloptera, chlorenchyma cells have a distinctive central cytoplasmic compartment, with chloroplasts which contain Rubisco, separated by cytoplasmic channels from a peripheral chloroplast-containing compartment, with phosphoenolpyruvate carboxylase (PEPC) distributed throughout the cytoplasm. In the tepals of S. aralocaspica, chlorenchyma cells have chloroplasts polarised towards opposite ends of the cells. Rubisco is found in chloroplasts towards the proximal end of the cell and PEPC is found throughout the cytoplasm. Also, green stems of B. cycloptera have a single layer of the specialised C4 type chlorenchyma cells beneath the epidermis, and in stems of S. aralocaspica, chlorenchyma cells are scattered throughout the cortical tissue with chloroplasts around their periphery, typical of C3 type chlorenchyma. During reproductive development, green flowers become very conspicuous, and their photosynthesis is suggested to be important in completion of the life cycle of these single-cell C4 functioning species.

8.
Funct Plant Biol ; 34(4): 339-342, 2007 May.
Article in English | MEDLINE | ID: mdl-32689360

ABSTRACT

Many plant species accumulate calcium oxalate crystals in specialised cells called crystal idioblasts. In one species of crystal-forming plants (Pistia stratiotes L.; forming raphide crystals), it has been shown that ascorbic acid is the primary precursor of oxalic acid. The question remains if this is true of other calcium oxalate crystal-forming plants. One way of answering the above question is by examining ascorbic acid as the oxalic acid precursor in diverse species with a variety of crystal types. In this study we tested ascorbic acid as the primary precursor of oxalic acid in four different species, each forming one of the four, thus far, unexamined crystal types: water hyacinth, styloid (and raphide); tomato, crystal sand; winged-bean, prismatic; water lily, astrosclereids with surface prismatic crystals. Pulse-chase feeding of 1-[14C]-ascorbic acid followed by resin embedding, microautoradiography and light microscopy were employed to examine incorporation of label into calcium oxalate crystals. For the species and crystal types studied, ascorbic acid is the primary precursor of oxalic acid and further, oxalic acid is added to crystals in patterns that correlate with the age and type of crystal involved.

9.
Funct Plant Biol ; 34(7): 571-580, 2007 Aug.
Article in English | MEDLINE | ID: mdl-32689385

ABSTRACT

Eleocharis contains many amphibious species, and displays diversity of photosynthetic mechanism (C3, C4 or C3-C4 intermediates). A unique feature of Eleocharis is the plasticity in the photosynthetic mechanism of some species in response to the environment. In this study, we have examined the culm anatomy and photosynthetic property of several Eleocharis species grown terrestrially and the changes in the newly produced culms over a short period time frame after switching from terrestrial to submerged condition. Eleocharis baldwinii (Torrey) Chapman is C4-like in terrestrial habitat, exhibiting O2 inhibition of photosynthesis with Rubisco expressed in both mesophyll and bundle sheath cells and PEPC strictly in the mesophyll cells, but switches to C3-C4 intermediacy when submerged. In addition to Eleocharis vivipara Link type 1 (which switches from C4-like to C3), two other photosynthetic types examined in this study were shown to have different responses to growth in either terrestrial or submerged conditions. E. vivipara type 2 is a typical C4 plant in the terrestrial habitat, but becomes a C3-C4 intermediate under submerged conditions. Further, terrestrially, E. vivipara type 3 is a C3-C4 intermediate, but when submerged the δ13C value increases to -6.7‰, indicating its use of bicarbonate as a major carbon source. The submerged form of this plant exhibited about three times higher photosynthetic O2 evolution rate, compared to the C3 species Eleocharis erythropoda Steudel. These Eleocharis species possess different molecular switches for regulating C4 gene expression in response to environmental stimuli both between different species, and in E. vivipara among different populations. The apparent expression of a bicarbonate transport system by E. vivipara type 3 while submerged represents a unique adaptation to low CO2 availability.

10.
Plant Cell ; 18(9): 2207-23, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16905659

ABSTRACT

Recently, three Chenopodiaceae species, Bienertia cycloptera, Bienertia sinuspersici, and Suaeda aralocaspica, were shown to possess novel C(4) photosynthesis mechanisms through the compartmentalization of organelles and photosynthetic enzymes into two distinct regions within a single chlorenchyma cell. Bienertia has peripheral and central compartments, whereas S. aralocaspica has distal and proximal compartments. This compartmentalization achieves the equivalent of spatial separation of Kranz anatomy, including dimorphic chloroplasts, but within a single cell. To characterize the mechanisms of organelle compartmentalization, the distribution of the major organelles relative to the cytoskeleton was examined. Examination of the distribution of the cytoskeleton using immunofluorescence studies and transient expression of green fluorescent protein-tagged cytoskeleton markers revealed a highly organized network of actin filaments and microtubules associating with the chloroplasts and showed that the two compartments in each cell had different cytoskeletal arrangements. Experiments using cytoskeleton-disrupting drugs showed in Bienertia and S. aralocaspica that microtubules are critical for the polarized positioning of chloroplasts and other organelles. Compartmentalization of the organelles in these species represents a unique system in higher plants and illustrates the degree of control the plant cell has over the organization and integration of multiorganellar processes within its cytoplasm.


Subject(s)
Cell Compartmentation/physiology , Chenopodiaceae/enzymology , Chenopodiaceae/ultrastructure , Cytoskeleton/physiology , Organelles/physiology , Photosynthesis/physiology , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/ultrastructure , Biomarkers , Carbon/metabolism , Cell Compartmentation/drug effects , Cell Polarity/drug effects , Cell Polarity/physiology , Chenopodiaceae/drug effects , Chloroplasts/metabolism , Chloroplasts/ultrastructure , Cytochalasin D/pharmacology , Cytoskeleton/drug effects , Cytoskeleton/ultrastructure , Dinitrobenzenes/pharmacology , Green Fluorescent Proteins/analysis , Microtubules/drug effects , Microtubules/metabolism , Microtubules/ultrastructure , Organelles/ultrastructure , Sulfanilamides/pharmacology
11.
Methods Mol Biol ; 323: 263-73, 2006.
Article in English | MEDLINE | ID: mdl-16739584

ABSTRACT

The beta-glucuronidase (GUS) gene is used extensively in plant biology studies; this analysis summarizes its advantages and limitations. With the advances in genomic sequencing and computational analyses (including bioinformatics), its application in the study of plant gene expression is now an integral component of modern day plant science. This chapter focuses on the detailed challenges of carrying out GUS studies for both qualitative and quantitative analyses, including the increasing employment of GUS from Bacillus strains, rather than E. coli; the Bacillus GUS genes encode proteins with enhanced properties, such as both increased thermostability and stability in the presence of crosslinking fixatives.


Subject(s)
Genes, Reporter , Genetic Techniques , Glucuronidase/genetics , Arabidopsis/genetics , Bacillus subtilis/genetics , Botany/methods , Computational Biology/methods , Gene Expression Regulation, Plant , Models, Chemical , Promoter Regions, Genetic
12.
Planta ; 224(4): 865-77, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16705404

ABSTRACT

Members of the Pinaceae family have complex chemical defense strategies. Conifer defenses associated with specialized cell types of the bark involve constitutive and inducible accumulation of phenolic compounds in polyphenolic phloem parenchyma cells and oleoresin terpenoids in resin ducts. These defenses can protect trees against insect herbivory and fungal colonization. The phytohormone ethylene has been shown to induce the same anatomical and cellular defense responses that occur following insect feeding, mechanical wounding, or fungal inoculation in Douglas fir (Pseudotsuga menziesii) stems (Hudgins and Franceschi in Plant Physiol 135:2134-2149, 2004). However, very little is known about the genes involved in ethylene formation in conifer defense or about the temporal and spatial patterns of their protein expression. The enzyme 1-aminocyclopropane-1-carboxylate oxidase (ACO) catalyzes the final step in ethylene biosynthesis. We cloned full-length and near full-length ACO cDNAs from three conifer species, Sitka spruce (Picea sitchensis), white spruce (P. glauca), and Douglas fir, each with high similarity to Arabidopsis thaliana ACO proteins. Using an Arabidopsis anti-ACO antibody we determined that ACO is constitutively expressed in Douglas fir stem tissues and is up-regulated by mechanical wounding, consistent with the wound-induced increase of ethylene levels. Immunolocalization showed cytosolic ACO is predominantly present in specialized cell types of the wound-induced bark, specifically in epithelial cells of terpenoid-producing cortical resin ducts, in polyphenolic phloem parenchyma cells, and in ray parenchyma cells.


Subject(s)
Amino Acid Oxidoreductases/metabolism , Ethylenes/metabolism , Picea/metabolism , Pseudotsuga/metabolism , Amino Acid Oxidoreductases/genetics , Amino Acid Sequence , Cloning, Molecular , Cytoplasm/metabolism , DNA, Complementary , Gene Expression Regulation, Plant , Genes, Plant , Magnoliopsida/genetics , Molecular Sequence Data , Picea/enzymology , Picea/genetics , Plant Bark/metabolism , Plant Diseases , Pseudotsuga/enzymology , Pseudotsuga/genetics , Sequence Homology, Amino Acid
13.
Ann Bot ; 98(1): 77-91, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16704997

ABSTRACT

BACKGROUND AND AIMS: Species having C4 photosynthesis belonging to the phosphoenolpyruvate carboxykinase (PEP-CK) subtype, which are found only in family Poaceae, have the most complex biochemistry among the three C4 subtypes. In this study, biochemical (western blots and immunolocalization of some key photosynthetic enzymes) and structural analyses were made on several species to further understand the PEP-CK system. This included PEP-CK-type C4 species Urochloa texana (subfamily Panicoideae), Spartina alterniflora and S. anglica (subfamily Chloridoideae), and an NADP-ME-type C4 species, Echinochloa frumentacea, which has substantial levels of PEP-CK. KEY RESULTS: Urochloa texana has typical Kranz anatomy with granal chloroplasts scattered around the cytoplasm in bundle sheath (BS) cells, while the Spartina spp. have BS forming long adaxial extensions above the vascular tissue and with chloroplasts in a strictly centrifugal position. Despite some structural and size differences, in all three PEP-CK species the chloroplasts in mesophyll and BS cells have a similar granal index (% appressed thylakoids). Immunolocalization studies show PEP-CK (which catalyses ATP-dependent decarboxylation) is located in the cytosol, and NAD-ME in the mitochondria, in BS cells, and in the BS extensions of Spartina. In the NADP-ME species E. frumentacea, PEP-CK is also located in the cytosol of BS cells, NAD-ME is very low, and the source of ATP to support PEP-CK is not established. CONCLUSIONS: Representative PEP-CK species from two subfamilies of polyphyletic origin have very similar biochemistry, compartmentation and chloroplast grana structure. Based on the results with PEP-CK species, schemes are presented with mesophyll and BS chloroplasts providing equivalent reductive power which show bioenergetics of carbon assimilation involving C4 cycles (PEP-CK and NAD-ME, the latter functioning to generate ATP to support the PEP-CK reaction), and the consequences of any photorespiration.


Subject(s)
Phosphoenolpyruvate Carboxykinase (ATP)/analysis , Plant Leaves/enzymology , Poaceae/enzymology , Blotting, Western , Immunohistochemistry , Malate Dehydrogenase/analysis , Malate Dehydrogenase/metabolism , Microscopy, Electron, Transmission , Models, Biological , Organelles/metabolism , Organelles/ultrastructure , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Photosynthesis/physiology , Plant Leaves/chemistry , Plant Leaves/cytology , Poaceae/cytology , Poaceae/ultrastructure
14.
New Phytol ; 167(2): 353-75, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15998390

ABSTRACT

Conifers are long-lived organisms, and part of their success is due to their potent defense mechanisms. This review focuses on bark defenses, a front line against organisms trying to reach the nutrient-rich phloem. A major breach of the bark can lead to tree death, as evidenced by the millions of trees killed every year by specialized bark-invading insects. Different defense strategies have arisen in conifer lineages, but the general strategy is one of overlapping constitutive mechanical and chemical defenses overlaid with the capacity to up-regulate additional defenses. The defense strategy incorporates a graded response from 'repel', through 'defend' and 'kill', to 'compartmentalize', depending upon the advance of the invading organism. Using a combination of toxic and polymer chemistry, anatomical structures and their placement, and inducible defenses, conifers have evolved bark defense mechanisms that work against a variety of pests. However, these can be overcome by strategies including aggregation pheromones of bark beetles and introduction of virulent phytopathogens. The defense structures and chemicals in conifer bark are reviewed and questions about their coevolution with bark beetles are discussed.


Subject(s)
Coleoptera/pathogenicity , Tracheophyta/parasitology , Animals , Biological Evolution , Fungi/pathogenicity , Models, Biological , Plant Bark/anatomy & histology , Plant Bark/microbiology , Plant Bark/parasitology , Plant Bark/physiology , Plant Diseases/microbiology , Plant Diseases/parasitology , Tracheophyta/anatomy & histology , Tracheophyta/genetics , Tracheophyta/physiology
15.
Exp Cell Res ; 307(2): 388-401, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-15893306

ABSTRACT

It has been well established that high mobility group A1 (HMGA1) proteins act within the nucleus of mammalian cells as architectural transcription factors that regulate the expression of numerous genes. Here, however, we report on the unexpected cytoplasmic/mitochondrial localization of the HMGA1 proteins within multiple cell types. Indirect immunofluorescence, electron microscopic immunolocalization, and Western blot studies revealed that, in addition to the nucleus, HMGA1 proteins could also be found in both the cytoplasm and mitochondria of randomly dividing populations of wild-type murine NIH3T3 cells and transgenic human MCF-7 breast cancer epithelial cells expressing a hemagglutinin tagged-HMGA1a fusion protein. While the molecular mechanisms underlying these novel subcellular localization patterns have not yet been determined, initial synchronization studies revealed a dynamic, cell cycle-dependent translocation of HMGA1 proteins from the nucleus into the cytoplasm and mitochondria of NIH3T3 cells. Furthermore, preliminary functionality studies utilizing a modified "chromatin" immunoprecipitation protocol revealed that HMGA1 retains its DNA binding capabilities within the mitochondria and associates with the regulatory D-loop region in vivo. We discuss potential new biological roles for the classically nuclear HMGA1 proteins with regard to the observed nucleocytoplasmic translocation, mitochondrial internalization, and regulatory D-loop DNA binding.


Subject(s)
Cell Nucleus/metabolism , HMGA1a Protein/physiology , Mitochondria/metabolism , Animals , Base Sequence , Binding Sites/genetics , Cell Cycle/physiology , Cell Line, Tumor , Cell Nucleus/ultrastructure , Chromatin Immunoprecipitation , Cytoplasm/metabolism , DNA/analysis , DNA, Mitochondrial/metabolism , DNA-Binding Proteins/metabolism , HMGA1a Protein/genetics , HMGA1a Protein/metabolism , Humans , Immunohistochemistry , Mice , Microscopy, Fluorescence , Microscopy, Immunoelectron , Mitochondria/ultrastructure , NIH 3T3 Cells , Protein Binding , Protein Transport/physiology , Subcellular Fractions/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transfection
16.
Annu Rev Plant Biol ; 56: 41-71, 2005.
Article in English | MEDLINE | ID: mdl-15862089

ABSTRACT

Calcium oxalate (CaOx) crystals are distributed among all taxonomic levels of photosynthetic organisms from small algae to angiosperms and giant gymnosperms. Accumulation of crystals by these organisms can be substantial. Major functions of CaOx crystal formation in plants include high-capacity calcium (Ca) regulation and protection against herbivory. Ultrastructural and developmental analyses have demonstrated that this biomineralization process is not a simple random physical-chemical precipitation of endogenously synthesized oxalic acid and environmentally derived Ca. Instead, crystals are formed in specific shapes and sizes. Genetic regulation of CaOx formation is indicated by constancy of crystal morphology within species, cell specialization, and the remarkable coordination of crystal growth and cell expansion. Using a variety of approaches, researchers have begun to unravel the exquisite control mechanisms exerted by cells specialized for CaOx formation that include the machinery for uptake and accumulation of Ca, oxalic acid biosynthetic pathways, and regulation of crystal growth.


Subject(s)
Calcium Oxalate/metabolism , Plants/metabolism , Calcium Oxalate/chemistry , Crystallization
17.
Plant Physiol ; 138(1): 173-83, 2005 May.
Article in English | MEDLINE | ID: mdl-15849302

ABSTRACT

Three key benzylisoquinoline alkaloid biosynthetic enzymes, (S)-N-methylcoclaurine-3'-hydroxylase (CYP80B1), berberine bridge enzyme (BBE), and codeinone reductase (COR), were localized in cultured opium poppy (Papaver somniferum) cells by sucrose density gradient fractionation and immunogold labeling. CYP80B1 catalyzes the second to last step in the formation of (S)-reticuline, the last common intermediate in sanguinarine and morphine biosynthesis. BBE converts (S)-reticuline to (S)-scoulerine as the first committed step in sanguinarine biosynthesis, and COR catalyzes the penultimate step in the branch pathway leading to morphine. Sanguinarine is an antimicrobial alkaloid that accumulates in the vacuoles of cultured opium poppy cells in response to elicitor treatment, whereas the narcotic analgesic morphine, which is abundant in opium poppy plants, is not produced in cultured cells. CYP80B1 and BBE were rapidly induced to high levels in response to elicitor treatment. By contrast, COR levels were constitutive in the cell cultures, but remained low and were not induced by addition of the elicitor. Western blots performed on protein homogenates from elicitor-treated cells fractionated on a sucrose density gradient showed the cosedimentation of CYP80B1, BBE, and sanguinarine with calreticulin, and COR with glutathione S-transferase. Calreticulin and glutathione S-transferase are markers for the endoplasmic reticulum (ER) and the cytosol, respectively. In response to elicitor treatment, large dilated vesicles rapidly developed from the lamellar ER of control cells and fused with the central vacuole. Immunogold localization supported the association of CYP80B1 and BBE with ER vesicles, and COR with the cytosol in elicitor-treated cells. Our results show that benzylisoquinoline biosynthesis and transport to the vacuole are associated with the ER, which undergoes major ultrastructural modification in response to the elicitor treatment of cultured opium poppy cells.


Subject(s)
Alkaloids/biosynthesis , Endoplasmic Reticulum/metabolism , Papaver/metabolism , Plant Growth Regulators/pharmacology , Alcohol Oxidoreductases/metabolism , Alkaloids/metabolism , Benzophenanthridines , Cells, Cultured , Cytochrome P-450 Enzyme System/metabolism , Immunohistochemistry , Isoquinolines , Microscopy, Electron , Mixed Function Oxygenases/metabolism , Molecular Sequence Data , NAD (+) and NADP (+) Dependent Alcohol Oxidoreductases , Oxidoreductases, N-Demethylating/metabolism , Papaver/enzymology , Phenanthridines/metabolism , Plant Proteins
18.
Funct Plant Biol ; 32(1): 67-77, 2005 Feb.
Article in English | MEDLINE | ID: mdl-32689112

ABSTRACT

The genus Aristida (Poaceae), is composed of species that have Kranz anatomy and C4 photosynthesis. Kranz anatomy typically consists of two photosynthetic cell types: a layer of mesophyll cells where atmospheric CO2 is fixed into C4 acids, and an internal, chlorenchymatous vascular bundle sheath to which C4 acids are transferred and then decarboxylated to donate CO2 to the C3 cycle. The anatomy of Aristida species is unusual as it has three distinct layers of chlorenchyma cells surrounding the vascular tissue: an inner bundle sheath, an outer bundle sheath and the mesophyll cells. In this study of Aristida purpurea Nutt. var. longiseta, the functions of the three layers of chlorenchyma cells relative to the C4 photosynthetic mechanism were determined using ultrastructural analysis, western blots, immunolocalisation of photosynthetic enzymes and starch histochemistry. The results indicate that mesophyll cells contain high levels of phosphoenolpyruvate carboxylase (PEPC) and pyruvate Pi dikinase (PPDK), and function to capture CO2 in the C4 cycle. The inner bundle sheath, which is high in Rubisco and contains NADP-malic enzyme and glycine decarboxylase, functions to transfer CO2 to the C3 cycle through decarboxylation of C4 acids and by decarboxylation of glycine in the glycolate pathway. The outer chlorenchymatous sheath is where ADPG pyrophosphorylase is mainly located, and this cell layer functions as the primary site of starch storage. The outer sheath, which has low levels of Rubisco and PEPC, may also have a role in refixation of any CO2 that leaks from the inner bundle sheath cells.

19.
Am J Bot ; 92(11): 1784-95, 2005 Nov.
Article in English | MEDLINE | ID: mdl-21646096

ABSTRACT

The terrestrial plant Bienertia cycloptera has been shown to accomplish C(4) photosynthesis within individual chlorenchyma cells by spatially separating the phases of carbon assimilation into distinct peripheral and central compartments. In this study, anatomical, physiological, and biochemical techniques were used to determine how this unique compartmentation develops. Western blots show ribulose-1,5-bisphosphate carboxylase (Rubisco) (chloroplastic) is present in the youngest leaves and increases during development, while levels of C(4) enzymes-pyruvate,Pi dikinase (chloroplastic), phosphoenolpyruvate carboxylase (PEPC) (cytosol), and NAD-malic enzyme (mitochondrial)-increase later in development. Immunolocalization confirmed this for Rubisco and PEPC. The youngest chlorenchyma cells have a central nucleus surrounded by monomorphic granal chloroplasts containing Rubisco. Later stages show progressive development of a central cytoplasmic compartment enriched with chloroplasts and mitochondria and of a peripheral cytoplasm with chloroplasts. A complex reticulum of connections between the compartments also developed and was characterized. δ(13)C isotope analyses show mature leaves have distinct C(4)-type isotope composition, while the composition in younger leaves is "C(4)-like." Based on the results, this form of single-cell C(4) photosynthesis develops from a common pool of organelles through partitioning to separate compartments, and the development of biochemically and ultrastructurally dimorphic chloroplasts.

20.
Annu Rev Plant Biol ; 55: 173-96, 2004.
Article in English | MEDLINE | ID: mdl-15377218

ABSTRACT

The efficiency of photosynthetic carbon assimilation in higher plants faces significant limitations due to the oxygenase activity of the enzyme Rubisco, particularly under warmer temperatures or water stress. A drop in atmospheric CO(2) and rise in O(2) as early as 300 mya provided selective pressure for the evolution of mechanisms to concentrate CO(2) around Rubisco in order to minimize oxygenase activity and the resultant loss of carbon through photorespiration. It is well established that a carbon-concentrating mechanism occurs in some terrestrial plants through the process of C(4) photosynthesis. These plants are characterized as having Kranz-type leaf anatomy, with two structurally and biochemically specialized photosynthetic cell types, mesophyll and bundle sheath, that function coordinately in carbon assimilation. C(4) photosynthesis has evolved independently many times with great diversity in forms of Kranz anatomy, structure of dimorphic chloroplasts, and biochemistry of the C(4) cycle. The most dramatic variants of C(4) terrestrial plants were discovered recently in two species, Bienertia cycloptera and Borszczowia aralocaspica (family Chenopodiaceae); each has novel compartmentation to accomplish C(4) photosynthesis within a single chlorenchyma cell. This review discusses the amazing diversity in C(4) systems, how the essential features of C(4) are accomplished in single-cell versus Kranz-type C(4) plants, and speculates on why single-cell C(4) plants evolved.


Subject(s)
Photosynthesis , Plants/metabolism , Chloroplasts/metabolism , Evolution, Molecular , Models, Biological , Plants/genetics , Ribulose-Bisphosphate Carboxylase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...