Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Life Sci ; 79(2): 82, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35048158

ABSTRACT

Senescence, the irreversible cell cycle arrest of damaged cells, is accompanied by a deleterious pro-inflammatory senescence-associated secretory phenotype (SASP). Senescence and the SASP are major factors in aging, cancer, and degenerative diseases, and interfere with the expansion of adult cells in vitro, yet little is known about how to counteract their induction and deleterious effects. Paracrine signals are increasingly recognized as important senescence triggers and understanding their regulation and mode of action may provide novel opportunities to reduce senescence-induced inflammation and improve cell-based therapies. Here, we show that the signalling protein WNT3A counteracts the induction of paracrine senescence in cultured human adult mesenchymal stem cells (MSCs). We find that entry into senescence in a small subpopulation of MSCs triggers a secretome that causes a feed-forward signalling cascade that with increasing speed induces healthy cells into senescence. WNT signals interrupt this cascade by repressing cytokines that mediate this induction of senescence. Inhibition of those mediators by interference with NF-κB or interleukin 6 signalling reduced paracrine senescence in absence of WNT3A and promoted the expansion of MSCs. Our work reveals how WNT signals can antagonize senescence and has relevance not only for expansion of adult cells but can also provide new insights into senescence-associated inflammatory and degenerative diseases.


Subject(s)
Mesenchymal Stem Cells/metabolism , Senescence-Associated Secretory Phenotype , Wnt Signaling Pathway , Cell Proliferation , Cells, Cultured , Humans , Mesenchymal Stem Cells/cytology , Middle Aged , Wnt3A Protein/metabolism
2.
Lab Invest ; 102(4): 391-400, 2022 04.
Article in English | MEDLINE | ID: mdl-34921235

ABSTRACT

Osteosarcoma is a high-grade bone-forming neoplasm, with a complex genome. Tumours frequently show chromothripsis, many deletions, translocations and copy number alterations. Alterations in the p53 or Rb pathway are the most common genetic alterations identified in osteosarcoma. Using spontaneously transformed murine mesenchymal stem cells (MSCs) which formed sarcoma after subcutaneous injection into mice, it was previously demonstrated that p53 is most often involved in the transformation towards sarcomas with complex genomics, including osteosarcoma. In the current study, not only loss of p53 but also loss of p16Ink4a is shown to be a driver of osteosarcomagenesis: murine MSCs with deficient p15Ink4b, p16Ink4a, or p19Arf transform earlier compared to wild-type murine MSCs. Furthermore, in a panel of nine spontaneously transformed murine MSCs, alterations in p15Ink4b, p16Ink4a, or p19Arf were observed in eight out of nine cases. Alterations in the Rb/p16 pathway could indicate that osteosarcoma cells are vulnerable to CDK4/CDK6 inhibitor treatment. Indeed, using two-dimensional (n = 7) and three-dimensional (n = 3) cultures of human osteosarcoma cell lines, it was shown that osteosarcoma cells with defective p16INK4A are sensitive to the CDK4/CDK6 inhibitor palbociclib after 72-hour treatment. A tissue microarray analysis of 109 primary tumour biopsies revealed a subset of patients (20-23%) with intact Rb, but defective p16 or overexpression of CDK4 and/or CDK6. These patients might benefit from CDK4/CDK6 inhibition, therefore our results are promising and might be translated to the clinic.


Subject(s)
Bone Neoplasms , Mesenchymal Stem Cells , Osteosarcoma , Animals , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/genetics , Cyclin-Dependent Kinase 6/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Mice , Osteosarcoma/drug therapy , Tumor Suppressor Protein p14ARF/genetics , Tumor Suppressor Protein p14ARF/metabolism , Tumor Suppressor Protein p53/genetics
3.
Int J Mol Sci ; 22(12)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34200964

ABSTRACT

For osteosarcoma (OS), the most common primary malignant bone tumor, overall survival has hardly improved over the last four decades. Especially for metastatic OS, novel therapeutic targets are urgently needed. A hallmark of cancer is aberrant metabolism, which justifies targeting metabolic pathways as a promising therapeutic strategy. One of these metabolic pathways, the NAD+ synthesis pathway, can be considered as a potential target for OS treatment. Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the classical salvage pathway for NAD+ synthesis, and NAMPT is overexpressed in OS. In this study, five OS cell lines were treated with the NAMPT inhibitor FK866, which was shown to decrease nuclei count in a 2D in vitro model without inducing caspase-driven apoptosis. The reduction in cell viability by FK866 was confirmed in a 3D model of OS cell lines (n = 3). Interestingly, only OS cells with low nicotinic acid phosphoribosyltransferase domain containing 1 (NAPRT1) RNA expression were sensitive to NAMPT inhibition. Using a publicly available (Therapeutically Applicable Research to Generate Effective Treatments (TARGET)) and a previously published dataset, it was shown that in OS cell lines and primary tumors, low NAPRT1 RNA expression correlated with NAPRT1 methylation around the transcription start site. These results suggest that targeting NAMPT in osteosarcoma could be considered as a novel therapeutic strategy, where low NAPRT expression can serve as a biomarker for the selection of eligible patients.


Subject(s)
Acrylamides/pharmacology , Bone Neoplasms/drug therapy , Gene Expression Regulation, Enzymologic/drug effects , Glioma/drug therapy , NAD/metabolism , Osteosarcoma/drug therapy , Pentosyltransferases/antagonists & inhibitors , Piperidines/pharmacology , Apoptosis , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Proliferation , Glioma/metabolism , Glioma/pathology , Humans , Osteosarcoma/metabolism , Osteosarcoma/pathology , Tumor Cells, Cultured
4.
Cancers (Basel) ; 13(5)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33807947

ABSTRACT

Sarcomas are rare mesenchymal tumors with a broad histological spectrum, but they can be divided into two groups based on molecular pathology: sarcomas with simple or complex genomics. Tumors with complex genomics can have aneuploidy and copy number gains and losses, which hampers the detection of early, initiating events in tumorigenesis. Often, no benign precursors are known, which is why good models are essential. The mesenchymal stem cell (MSC) is the presumed cell of origin of sarcoma. In this study, MSCs of murine and canine origin are used as a model to identify driver events for sarcomas with complex genomic alterations as they transform spontaneously after long-term culture. All transformed murine but not canine MSCs formed sarcomas after subcutaneous injection in mice. Using whole genome sequencing, spontaneously transformed murine and canine MSCs displayed a complex karyotype with aneuploidy, point mutations, structural variants, inter-chromosomal translocations, and copy number gains and losses. Cross-species analysis revealed that point mutations in Tp53/Trp53 are common in transformed murine and canine MSCs. Murine MSCs with a cre-recombinase induced deletion of exon 2-10 of Trp53 transformed earlier compared to wild-type murine MSCs, confirming the contribution of loss of p53 to spontaneous transformation. Our comparative approach using transformed murine and canine MSCs points to a crucial role for p53 loss in the formation of sarcomas with complex genomics.

5.
Virchows Arch ; 476(1): 147-157, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31741049

ABSTRACT

Bone tumours are difficult to diagnose and treat, as they are rare and over 60 different subtypes are recognised. The emergence of next-generation sequencing has partly elucidated the molecular mechanisms behind these tumours, including the group of bone forming tumours (osteoma, osteoid osteoma, osteoblastoma and osteosarcoma). Increased knowledge on the molecular mechanism could help to identify novel diagnostic markers and/or treatment options. Osteoid osteoma and osteoblastoma are bone forming tumours without malignant potential that have overlapping morphology. They were recently shown to carry FOS and-to a lesser extent-FOSB rearrangements suggesting that these tumours are closely related. The presence of these rearrangements could help discriminate these entities from other lesions with woven bone deposition. Osteosarcoma is a malignant bone forming tumour for which different histological subtypes are recognised. High-grade osteosarcoma is the prototype of a complex karyotype tumour, and extensive research exploring its molecular background has identified phenomena like chromothripsis and kataegis and some recurrent alterations. Due to lack of specificity, this has not led to a valuable novel diagnostic marker so far. Nevertheless, these studies have also pointed towards potential targetable drivers of which the therapeutic merit remains to be further explored.


Subject(s)
Bone Neoplasms/pathology , Osteoblastoma/pathology , Osteoma, Osteoid/pathology , Osteosarcoma/pathology , Bone Neoplasms/genetics , Gene Rearrangement , Genes, p53 , Genetic Predisposition to Disease , Humans , Osteoblastoma/genetics , Osteoma/genetics , Osteoma/pathology , Osteoma, Osteoid/genetics , Retinoblastoma Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...