Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 23(22): 10617-10624, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37948635

ABSTRACT

The development of quantum simulators, artificial platforms where the predictions of many-body theories of correlated quantum materials can be tested in a controllable and tunable way, is one of the main challenges of condensed matter physics. Here we introduce artificial lattices made of lead halide perovskite nanocubes as a new platform to simulate and investigate the physics of correlated quantum materials. We demonstrate that optical injection of quantum confined excitons in this system realizes the two main features that ubiquitously pervade the phase diagram of many quantum materials: collective phenomena, in which long-range orders emerge from incoherent fluctuations, and the excitonic Mott transition, which has one-to-one correspondence with the insulator-to-metal transition described by the repulsive Hubbard model in a magnetic field. Our results demonstrate that time-resolved experiments provide a quantum simulator that is able to span a parameter range relevant for a broad class of phenomena, such as superconductivity and charge-density waves.

2.
Opt Lett ; 48(11): 2961-2964, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37262254

ABSTRACT

We investigate transient, photo-thermally induced metasurface effects in a planar thin-film multilayer based on a phase-transition material. Illumination of a properly designed multilayer with two obliquely incident and phase-coherent pulsed pumps induces a transient and reversible temperature pattern in the phase-transition layer. The deep periodic modulation of the refractive index, caused by the interfering pumps, produces a transient Fano-like spectral feature associated with a guided-mode resonance. A coupled opto-thermal model is employed to analyze the temporal dynamics of the transient metasurface and to evaluate its speed and modulation capabilities. Using near-infrared pump pulses with peak intensities of the order of 100 MW/cm2 and duration of a few picoseconds, we find that the characteristic time scale of the transient metasurface is of the order of nanoseconds. Our results indicate that inducing transient metasurface effects in films of phase-transition materials can lead to new opportunities for dynamic control of quality (Q)-factor in photonic resonances, and for light modulation and switching.

3.
Nat Commun ; 13(1): 3730, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35764628

ABSTRACT

Mott transitions in real materials are first order and almost always associated with lattice distortions, both features promoting the emergence of nanotextured phases. This nanoscale self-organization creates spatially inhomogeneous regions, which can host and protect transient non-thermal electronic and lattice states triggered by light excitation. Here, we combine time-resolved X-ray microscopy with a Landau-Ginzburg functional approach for calculating the strain and electronic real-space configurations. We investigate V2O3, the archetypal Mott insulator in which nanoscale self-organization already exists in the low-temperature monoclinic phase and strongly affects the transition towards the high-temperature corundum metallic phase. Our joint experimental-theoretical approach uncovers a remarkable out-of-equilibrium phenomenon: the photo-induced stabilisation of the long sought monoclinic metal phase, which is absent at equilibrium and in homogeneous materials, but emerges as a metastable state solely when light excitation is combined with the underlying nanotexture of the monoclinic lattice.

4.
Int J Mol Sci ; 22(16)2021 Aug 14.
Article in English | MEDLINE | ID: mdl-34445453

ABSTRACT

NPY and its Y1 cognate receptor (Y1R) have been shown to be involved in the regulation of stress, anxiety, depression and energy homeostasis. We previously demonstrated that conditional knockout of Npy1r gene in the excitatory neurons of the forebrain of adolescent male mice (Npy1rrfb mice) decreased body weight growth and adipose tissue and increased anxiety. In the present study, we used the same conditional system to examine whether the targeted disruption of the Npy1r gene in limbic areas might affect susceptibility to obesity and associated disorders during adulthood in response to a 3-week high-fat diet (HFD) regimen. We demonstrated that following HFD exposure, Npy1rrfb male mice showed increased body weight, visceral adipose tissue, and blood glucose levels, hyperphagia and a dysregulation of calory intake as compared to control Npy1r2lox mice. These results suggest that low expression of Npy1r in limbic areas impairs habituation to high caloric food and causes high susceptibility to diet-induced obesity and glucose intolerance in male mice, uncovering a specific contribution of the limbic Npy1r gene in the dysregulation of the eating/satiety balance.


Subject(s)
Diet, High-Fat , Glucose Intolerance/metabolism , Limbic System/metabolism , Obesity/metabolism , Receptors, Neuropeptide Y/metabolism , Animals , Eating , Gene Knockout Techniques , Glucose Intolerance/etiology , Male , Mice , Obesity/etiology , Receptors, Neuropeptide Y/genetics
5.
Pharmaceuticals (Basel) ; 14(5)2021 May 14.
Article in English | MEDLINE | ID: mdl-34069020

ABSTRACT

Medical cannabis is increasingly being used in the treatment and support of several diseases and syndromes. The quantitative determination of active ingredients (delta-9 tetrahydrocannabinol, THC, and cannabidiol, CBD) in galenic oily preparations is prescribed by law for each produced batch. The aim of this work is to describe the organization of the titration activity centralized at three regional reference laboratories in Northern Italy. Pre-analytical, analytical, and post-analytical phases have been defined in order to guarantee high quality standards. A cross-validation between laboratories allowed for the definition of the procedures that guarantee the interchangeability between reference laboratories. The risk management protocol adopted can be useful for others who need to undertake this activity.

6.
ACS Nano ; 14(10): 13602-13610, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33054175

ABSTRACT

The full control of the fundamental photophysics of nanosystems at frequencies as high as few THz is key for tunable and ultrafast nanophotonic devices and metamaterials. Here we combine geometrical and ultrafast control of the optical properties of halide perovskite nanoparticles, which constitute a prominent platform for nanophotonics. The pulsed photoinjection of free carriers across the semiconducting gap leads to a subpicosecond modification of the far-field electromagnetic properties that is fully controlled by the geometry of the system. When the nanoparticle size is tuned so as to achieve the overlap between the narrowband excitons and the geometry-controlled Mie resonances, the ultrafast modulation of the transmittivity is completely reversed with respect to what is usually observed in nanoparticles with different sizes, in bulk systems, and in thin films. The interplay between chemical, geometrical, and ultrafast tuning offers an additional control parameter with impact on nanoantennas and ultrafast optical switches.

7.
Psychoneuroendocrinology ; 38(12): 2933-42, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24060458

ABSTRACT

Stress and hypercaloric food are recognized risk factors for obesity, Metabolic Syndrome (MetS) and Type 2 Diabetes (T2D). Given the complexity of these metabolic processes and the unavailability of animal models, there is poor understanding of their underlying mechanisms. We established a model of chronic psychosocial stress in which subordinate mice are vulnerable to weight gain while dominant mice are resilient. Subordinate mice fed a standard diet showed marked hyperphagia, high leptin, low adiponectin, and dyslipidemia. Despite these molecular signatures of MetS and T2D, subordinate mice fed a standard diet were still euglycemic. We hypothesized that stress predisposes subordinate mice to develop T2D when synergizing with other risk factors. High fat diet aggravated dyslipidemia and the MetS thus causing a pre-diabetes-like state in subordinate mice. Contrary to subordinates, dominant mice were fully protected from stress-induced metabolic disorders when fed both a standard- and a high fat-diet. Dominant mice showed a hyperphagic response that was similar to subordinate but, unlike subordinates, showed a significant increase in VO2, VCO2, and respiratory exchange ratio when compared to control mice. Overall, we demonstrated a robust stress- and social status-dependent effect on the development of MetS and T2D and provided insights on the physiological mechanisms. Our results are reminiscent of the effect of the individual socioeconomic status on human health and provide an animal model to study the underlying molecular mechanisms.


Subject(s)
Hyperphagia/psychology , Insulin Resistance , Metabolic Syndrome/metabolism , Metabolic Syndrome/psychology , Social Environment , Stress, Psychological/psychology , Adiponectin/metabolism , Animals , Calorimetry, Indirect , Diabetes Mellitus, Type 2/blood , Diet , Diet, High-Fat , Energy Intake , Energy Metabolism , Glucose Tolerance Test , Hyperphagia/etiology , Immunohistochemistry , Leptin/blood , Male , Mice , Risk Factors , Social Dominance , Stress, Psychological/complications
8.
PLoS One ; 4(1): e4331, 2009.
Article in English | MEDLINE | ID: mdl-19180229

ABSTRACT

Social and psychological factors interact with genetic predisposition and dietary habit in determining obesity. However, relatively few pre-clinical studies address the role of psychosocial factors in metabolic disorders. Previous studies from our laboratory demonstrated in male mice: 1) opposite status-dependent effect on body weight gain under chronic psychosocial stress; 2) a reduction in body weight in individually housed (Ind) male mice. In the present study these observations were extended to provide a comprehensive characterization of the metabolic consequences of chronic psychosocial stress and individual housing in adult CD-1 male mice. Results confirmed that in mice fed standard diet, dominant (Dom) and Ind had a negative energy balance while subordinate (Sub) had a positive energy balance. Locomotor activity was depressed in Sub and enhanced in Dom. Hyperphagia emerged for Dom and Sub and hypophagia for Ind. Dom also showed a consistent decrease of visceral fat pads weight as well as increased norepinephrine concentration and smaller adipocytes diameter in the perigonadal fat pad. On the contrary, under high fat diet Sub and, surprisingly, Ind showed higher while Dom showed lower vulnerability to obesity associated with hyperphagia. In conclusion, we demonstrated that social status under chronic stress and individual housing deeply affect mice metabolic functions in different, sometime opposite, directions. Food intake, the hedonic response to palatable food as well as the locomotor activity and the sympathetic activation within the adipose fat pads all represent causal factors explaining the different metabolic alterations observed. Overall this study demonstrates that pre-clinical animal models offer a suitable tool for the investigation of the metabolic consequences of chronic stress exposure and associated psychopathologies.


Subject(s)
Metabolic Diseases/etiology , Obesity/etiology , Social Environment , Stress, Psychological/complications , Adipose Tissue/physiopathology , Aggression , Animals , Body Weight/physiology , Corticosterone/blood , Diet/adverse effects , Dietary Fats/administration & dosage , Disease Models, Animal , Dominance-Subordination , Housing, Animal , Hyperphagia/psychology , Male , Metabolic Diseases/psychology , Mice , Motor Activity , Norepinephrine/blood , Obesity/psychology , Social Isolation/psychology , Stress, Psychological/psychology , Tyrosine 3-Monooxygenase/metabolism , Weight Gain/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...