Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(13): 15527-15534, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38585070

ABSTRACT

The speciation of technetium in the nitric acid/dibutylphosphoric acid (HDBP)-n-dodecane system was studied by extended X-ray absorption fine structure (EXAFS) spectroscopy and theoretical methods. Tetravalent technetium, produced by the hydrazine reduction of TcO4- in 3 M HNO3, was extracted by HDBP in n-dodecane (30% by volume). During extraction, the splitting of the organic phase into a heavy phase and a light phase was observed. EXAFS analysis is consistent with the presence of Tc(NO3)3(DBP)(HDBP)2 in the light phase and Tc(NO3)2(DBP)2(HDBP)2 in the heavy phase. Density functional theory calculations at the B3LYP/6-31G* level confirm the stability of the proposed species and indicate that stereoisomers -mer- and fac-Tc(NO3)3(DBP)(HDBP)2 for the light phase and cis- and trans-Tc(NO3)2(DBP)2(HDBP)2 for the heavy phase] could coexist in the system (in the n-dodecane solution). Mechanisms of formation of Tc(NO3)3(DBP)(HDBP)2 and Tc(NO3)2(DBP)2(HDBP)2 are proposed.

2.
Inorg Chem ; 62(40): 16378-16387, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37751567

ABSTRACT

The speciation of Tc after the extraction of Tc(IV) from H2O and 1 M HNO3 by dibutylphosphoric acid (HDBP) in dodecane has been studied by X-ray absorption fine structure (XAFS) spectroscopy. Results show the formation of dimeric species with Tc2O2 and Tc2O units, and the formulas [Tc2O2(DBP·HDBP)4] (1) and [Tc2O(NO3)2(DBP)2(DBP·HDBP)2] (2) were, respectively, proposed for the species extracted from H2O and 1 M HNO3. The interatomic Tc-Tc distances found in the Tc2O2 and Tc2O units [2.55(3) and 3.57(4) Å, respectively] are similar to the ones found in Tc(IV) dinuclear species. It is likely that the speciation of Tc(IV) in dodecane is due to the extraction of a species with a Tc2O unit for (2) and to the redissolution of a Tc(IV)-DBP solid for (1). The XAFS results for (1) and (2) were compared to that obtained for the extraction of Tc(IV) with TBP/HDBP/dodecane from 0.5 M HNO3, (3) which highlight the formation of Tc mononuclear nitrate species {i.e., [Tc(NO3)3(DBP)] or [Tc(NO3)2(DBP·HDBP)]}. These results confirm the importance of the preparation and speciation of the Tc(IV) aqueous solutions prior to extraction and how much this influences and drives the final Tc speciation in organic extraction. These studies outline the complexity of Tc separation chemistry and provide insights into the behavior of Tc during the reprocessing of used nuclear fuel.

3.
Inorg Chem ; 62(50): 20567-20581, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-36724083

ABSTRACT

Three isotopes of scandium─43Sc, 44Sc, and 47Sc─have attracted increasing attention as potential candidates for use in imaging and therapy, respectively, as well as for possible theranostic use as an elementally matched pair. Here, we present the octadentate chelator 3,4,3-(LI-1,2-HOPO) (or HOPO), an effective chelator for hard cations, as a potential ligand for use in radioscandium constructs with simple radiolabeling under mild conditions. HOPO forms a 1:1 Sc-HOPO complex that was fully characterized, both experimentally and theoretically. [47Sc]Sc-HOPO exhibited good stability in chemical and biological challenges over 7 days. In healthy mice, [43,47Sc]Sc-HOPO cleared the body rapidly with no signs of demetalation. HOPO is a strong candidate for use in radioscandium-based radiopharmaceuticals.


Subject(s)
Pyridones , Radiopharmaceuticals , Animals , Mice , Radiopharmaceuticals/chemistry , Pyridones/chemistry , Chelating Agents/chemistry , Positron-Emission Tomography/methods , Ligands
4.
Nucl Med Biol ; 92: 228-240, 2021 01.
Article in English | MEDLINE | ID: mdl-33558017

ABSTRACT

Targeted alpha therapy (TAT) is an area of research with rapidly increasing importance as the emitted alpha particle has a significant effect on inducing cytotoxic effects on tumor cells while mitigating dose to normal tissues. Two significant isotopes of interest within the area of TAT are thorium-227 and actinium-225 due to their nuclear characteristics. Both isotopes have physical half-lives suitable for coordination with larger biomolecules, and additionally actinium-225 has potential to serve as an in vivo generator. In this review, the authors will discuss the production, purification, labeling reactions, and biological studies of actinium-225 and thorium-227 complexes and clinical studies.


Subject(s)
Alpha Particles/therapeutic use , Animals , Humans , Isotope Labeling , Radiochemistry
5.
Dalton Trans ; 48(39): 14547-14565, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31556418

ABSTRACT

Metallic radionuclides have been instrumental in the field of nuclear imaging for over half a century. While recent years have played witness to a dramatic rise in the use of radiometals as labels for chelator-bearing biomolecules, imaging agents based solely on coordination compounds of radiometals have long played a critical role in the discipline as well. In this work, we seek to provide a brief overview of metal complex-based radiopharmaceuticals for positron emission tomography (PET) and single photon emission computed tomography (SPECT). More specifically, we have focused on imaging agents in which the metal complex itself rather than a pendant biomolecule or targeting moiety is responsible for the in vivo behavior of the tracer. This family of compounds contains metal complexes based on an array of different nuclides as well as probes that have been used for the imaging of a variety of pathologies, including infection, inflammation, cancer, and heart disease. Indeed, two of the defining traits of transition metal complexes-modularity and redox chemistry-have both been creatively leveraged in the development of imaging agents. In light of our audience, particular attention is paid to structure and mechanism, though clinical data is addressed as well. Ultimately, it is our hope that this review will not only educate readers about some of the seminal work performed in this space over the last 30 years but also spur renewed interest in the creation of radiopharmaceuticals based on small metal complexes.


Subject(s)
Chelating Agents/chemistry , Coordination Complexes/chemistry , Neoplasms/diagnosis , Radiopharmaceuticals/chemistry , Transition Elements/chemistry , Animals , Humans , Neoplasms/diagnostic imaging , Positron-Emission Tomography , Tomography, Emission-Computed, Single-Photon
6.
Org Biomol Chem ; 17(28): 6866-6871, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31268109

ABSTRACT

The bifunctional ligand p-SCN-Bn-HOPO, which has four 1,2-hydroxypyridinone groups on a spermine backbone with an isothiocyanate linker, has been shown to be an efficient and stable chelator for Zr(iv) and, more importantly, the radioisotope 89Zr for use in radiolabeling antibodies for positron emission tomography (PET) imaging. Previous studies of 89Zr-HOPO-trastuzumab in mice showed low background, good tumor to organ contrast, and very low bone uptake which show p-SCN-Bn-HOPO to be an important next-generation bifunctional chelator for radioimmunoPET imaging with 89Zr. However, the reported synthesis of p-SCN-Bn-HOPO involves nine steps and multiple HPLC purifications with an overall yield of about 1.4%. Herein we report an improved and efficient synthesis of p-SCN-Bn-HOPO in four steps with 14.3% overall yield which will improve its availability for further biological studies and wider application in PET imaging. The new synthetic route also allows variation in linker length and chemistries which may be helpful in modifying in vivo clearance behaviors of future agents.


Subject(s)
Chelating Agents/chemical synthesis , Pyridones/chemistry , Spermine/chemistry , Chelating Agents/chemistry , Molecular Structure , Positron-Emission Tomography
7.
Nucl Med Biol ; 68-69: 1-13, 2019.
Article in English | MEDLINE | ID: mdl-30578134

ABSTRACT

A pentapeptide macrocyclic ligand, KYCAR (lysyl-tyrosyl-cystyl-alanyl-arginine), has been designed as a potential chelating ligand for SPECT imaging and therapeutic in vivo agents. This study shows the synthesis and characterization of KYCAR complexes containing nonradioactive rhenium, 99mTc, or 188Re. The metal complexes were also biologically evaluated to determine in vivo distribution in healthy mice. The overall goals of this project were (1) to synthesize the Tc/Re pentapeptide complexes, (2) to identify spectroscopic methods for characterization of syn versus anti rhenium peptide complexes, (3) to analyze the ex vivo stability, and (4) to assess the biological properties of the [99mTc]TcO-KYCAR and [188Re]ReO-KYCAR complexes in vivo. Details on these efforts are provided below. METHODS: NatRe/99mTc/188ReO-KYCAR complexes were synthesized, and macroscopic species were characterized via HPLC, IR, NMR, and CD. These characterization data were compared to the crystallographic data of ReO-KYC to assist in the assignment of diastereomers and to aid in the determination of the structure of the complex. RESULTS: The radiometal complexes were synthesized with high purity (>95%). HPLC, IR, NMR and CD data on the macroscopic natReO-KYCAR complexes confirm the successful complexation as well as the presence of two diastereomers in syn and anticonformations. Tracer level complexes show favorable stabilities ex vivo for 2+ h. CONCLUSION: Macroscopic metal complexes form diastereomers with the KYCAR ligand; however, this phenomenon is not readily observed on the tracer level due to the rapid interconversion. It was determined through pKa measurements that the macroscopic natReO-KYCAR complex is 0 at physiological pH. The [99mTc]TcO-KYCAR is stable in vitro while the [188Re]ReO-KYCAR shows 50% decomposition in PBS and serum. Biologically, the tracer level complexes clear through the hepatobiliary pathway. Some decomposition of both tracers is evident by uptake in the thyroid and stomach.


Subject(s)
Oligopeptides/chemical synthesis , Radioisotopes/chemistry , Rhenium/chemistry , Technetium/chemistry , Amino Acid Sequence , Animals , Chemistry Techniques, Synthetic , Female , Ligands , Mice , Mice, Nude , Oligopeptides/chemistry , Oligopeptides/pharmacokinetics , Radiochemistry , Tissue Distribution , Tomography, Emission-Computed, Single-Photon
8.
J Nucl Med ; 59(7): 1020-1027, 2018 07.
Article in English | MEDLINE | ID: mdl-29496984

ABSTRACT

The use of radioactive sources to deliver cytotoxic ionizing radiation to disease sites dates back to the early 20th century, with the discovery of radium and its physiologic effects. α-emitters are of particular interest in the field of clinical oncology for radiotherapy applications. The first part of this review explored the basic radiochemistry, high cell-killing potency, and availability of α-emitting radionuclides, together with hurdles such as radiolabeling methods and daughter redistribution. The second part of this review will give an overview of the most promising and current uses of α-emitters in preclinical and clinical studies.


Subject(s)
Alpha Particles/therapeutic use , Radiochemistry , Translational Research, Biomedical/methods , Animals , Beta Particles/therapeutic use , Humans
9.
J Nucl Med ; 59(6): 878-884, 2018 06.
Article in English | MEDLINE | ID: mdl-29545378

ABSTRACT

With a short particle range and high linear energy transfer, α-emitting radionuclides demonstrate high cell-killing efficiencies. Even with the existence of numerous radionuclides that decay by α-particle emission, only a few of these can reasonably be exploited for therapeutic purposes. Factors including radioisotope availability and physical characteristics (e.g., half-life) can limit their widespread dissemination. The first part of this review will explore the diversity, basic radiochemistry, restrictions, and hurdles of α-emitters.


Subject(s)
Alpha Particles/therapeutic use , Radiochemistry , Alpha Particles/adverse effects , Humans , Isotope Labeling
10.
Article in English | MEDLINE | ID: mdl-27998683

ABSTRACT

We examined the positional isomerism and vanadium substitution on the 51V magic angle spinning NMR spectra of potassium salts of vanadium-substituted polyoxotungstates of the Wells-Dawson series. NMR parameters of this class of catalytically active polyoxotungstates effect of are reported. Multiple species, indicative of differences in the local environment at the substitution sites, are observed in solid-state NMR spectra of the di- and tri- substituted complexes in contrast to solution NMR spectra, where single average chemical shift was observed. The quadrupolar and chemical shift anisotropy parameters depend strongly on the position and the degree of the vanadium substitution into the oxoanion core establishing 51V SATRAS NMR spectroscopy as a sensitive probe of the local electronic environment in these catalytically active solids.


Subject(s)
Magnetic Resonance Spectroscopy , Tungsten Compounds/chemistry , Vanadium/chemistry , Isomerism , Models, Molecular , Molecular Conformation
11.
J Med Chem ; 59(20): 9381-9389, 2016 Oct 27.
Article in English | MEDLINE | ID: mdl-27676258

ABSTRACT

A high yield synthesis of a novel, small molecule, bisphosphonate-modified trans-cyclooctene (TCO-BP, 2) that binds to regions of active bone metabolism and captures functionalized tetrazines in vivo, via the bioorthogonal inverse electron demand Diels-Alder (IEDDA) cycloaddition, was developed. A 99mTc-labeled derivative of 2 demonstrated selective localization to shoulder and knee joints in a biodistribution study in normal mice. Compound 2 reacted rapidly with a 177Lu-labeled tetrazine in vitro, and pretargeting experiments in mice, using 2 and the 177Lu-labeled tetrazine, yielded high activity concentrations in shoulder and knee joints, with minimal uptake in other tissues. Pretargeting experiments with 2 and a novel 99mTc-labeled tetrazine also produced high activity concentrations in the knees and shoulders. Critically, both radiolabeled tetrazines showed negligible uptake in the skeleton and joints when administered in the absence of 2. Compound 2 can be utilized to target functionalized tetrazines to bone and represents a convenient reagent to test novel tetrazines for use with in vivo bioorthogonal pretargeting strategies.


Subject(s)
Bone and Bones/metabolism , Cyclooctanes/pharmacokinetics , Lutetium/pharmacokinetics , Technetium Compounds/pharmacokinetics , Tetrazoles/pharmacokinetics , Animals , Bone and Bones/chemistry , Cyclooctanes/administration & dosage , Cyclooctanes/chemistry , Dose-Response Relationship, Drug , Female , Lutetium/chemistry , Mice , Mice, Inbred BALB C , Molecular Structure , Radioisotopes , Structure-Activity Relationship , Technetium Compounds/chemistry , Tetrazoles/chemistry , Tissue Distribution
12.
Bioconjug Chem ; 26(12): 2579-91, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26550847

ABSTRACT

Zirconium-89 has an ideal half-life for use in antibody-based PET imaging; however, when used with the chelator DFO, there is an accumulation of radioactivity in the bone, suggesting that the (89)Zr(4+) cation is being released in vivo. Therefore, a more robust chelator for (89)Zr could reduce the in vivo release and the dose to nontarget tissues. Evaluation of the ligand 3,4,3-(LI-1,2-HOPO) demonstrated efficient binding of (89)Zr(4+) and high stability; therefore, we developed a bifunctional derivative, p-SCN-Bn-HOPO, for conjugation to an antibody. A Zr-HOPO crystal structure was obtained showing that the Zr is fully coordinated by the octadentate HOPO ligand, as expected, forming a stable complex. p-SCN-Bn-HOPO was synthesized through a novel pathway. Both p-SCN-Bn-HOPO and p-SCN-Bn-DFO were conjugated to trastuzumab and radiolabeled with (89)Zr. Both complexes labeled efficiently and achieved specific activities of approximately 2 mCi/mg. PET imaging studies in nude mice with BT474 tumors (n = 4) showed good tumor uptake for both compounds, but with a marked decrease in bone uptake for the (89)Zr-HOPO-trastuzumab images. Biodistribution data confirmed the lower bone activity, measuring 17.0%ID/g in the bone at 336 h for (89)Zr-DFO-trastuzumab while (89)Zr-HOPO-trastuzumab only had 2.4%ID/g. We successfully synthesized p-SCN-Bn-HOPO, a bifunctional derivative of 3,4,3-(LI-1,2-HOPO) as a potential chelator for (89)Zr. In vivo studies demonstrate the successful use of (89)Zr-HOPO-trastuzumab to image BT474 breast cancer with low background, good tumor to organ contrast, and, importantly, very low bone uptake. The reduced bone uptake seen with (89)Zr-HOPO-trastuzumab suggests superior stability of the (89)Zr-HOPO complex.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast/diagnostic imaging , Chelating Agents/chemistry , Deferoxamine/chemistry , Immunoconjugates/chemistry , Positron-Emission Tomography/methods , Pyridones/chemistry , Zirconium/chemistry , Animals , Cell Line, Tumor , Chelating Agents/pharmacokinetics , Deferoxamine/pharmacokinetics , Female , Humans , Immunoconjugates/pharmacokinetics , Mice, Nude , Models, Molecular , Pyridones/pharmacokinetics , Tissue Distribution , Trastuzumab/chemistry , Zirconium/pharmacokinetics
13.
J Labelled Comp Radiopharm ; 57(7): 441-7, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24889257

ABSTRACT

A novel approach towards the synthesis of radiolabeled organometallic rhenium complexes is presented. We successfully synthesized and analyzed the first (188)Re-labeled N-heterocyclic biscarbene complex, trans-dioxobis(1,1'-methylene-bis(3,3'-diisopropylimidazolium-2-ylidene))(188)rhenium(V) hexafluorophosphate ((188)Re-4) via transmetalation using an air-stable and moisture-stable silver(I) biscarbene complex. In order to assess the viability of this complex as a potential lead structure for in vivo applications, the stability of the (188)Re-NHC complex was tested in physiologically relevant media. Ultimately, our studies illustrate that the complex we synthesized dissociates rapidly and is therefore unsuitable for use in radiopharmaceuticals. However, it is clear that the transmetalation approach we have developed is a rapid, robust, and mild method for the synthesis of new (188)Re-labeled carbene complexes.


Subject(s)
Coordination Complexes/chemical synthesis , Imidazoles/chemical synthesis , Methane/analogs & derivatives , Radioisotopes/chemistry , Radiopharmaceuticals/chemical synthesis , Rhenium/chemistry , Coordination Complexes/chemistry , Imidazoles/chemistry , Methane/chemistry
14.
J Med Chem ; 57(11): 4849-60, 2014 Jun 12.
Article in English | MEDLINE | ID: mdl-24814511

ABSTRACT

Zirconium-89 is an effective radionuclide for antibody-based positron emission tomography (PET) imaging because its physical half-life (78.41 h) matches the biological half-life of IgG antibodies. Desferrioxamine (DFO) is currently the preferred chelator for (89)Zr(4+); however, accumulation of (89)Zr in the bones of mice suggests that (89)Zr(4+) is released from DFO in vivo. An improved chelator for (89)Zr(4+) could eliminate the release of osteophilic (89)Zr(4+) and lead to a safer PET tracer with reduced background radiation dose. Herein, we present an octadentate chelator 3,4,3-(LI-1,2-HOPO) (or HOPO) as a potentially superior alternative to DFO. The HOPO ligand formed a 1:1 Zr-HOPO complex that was evaluated experimentally and theoretically. The stability of (89)Zr-HOPO matched or surpassed that of (89)Zr-DFO in every experiment. In healthy mice, (89)Zr-HOPO cleared the body rapidly with no signs of demetalation. Ultimately, HOPO has the potential to replace DFO as the chelator of choice for (89)Zr-based PET imaging agents.


Subject(s)
Chelating Agents/chemistry , Coordination Complexes/chemistry , Pyridones/chemistry , Radiopharmaceuticals/chemistry , Spermine/analogs & derivatives , Zirconium , Animals , Chelating Agents/pharmacokinetics , Coordination Complexes/pharmacokinetics , Drug Stability , Female , Isotope Labeling , Mice , Mice, Nude , Positron-Emission Tomography , Pyridones/pharmacokinetics , Radioisotopes , Radiopharmaceuticals/pharmacokinetics , Spermine/chemistry , Spermine/pharmacokinetics , Tissue Distribution
15.
Dalton Trans ; 42(13): 4348-52, 2013 Apr 07.
Article in English | MEDLINE | ID: mdl-23403900

ABSTRACT

The reaction between HTcO(4) and MeOH in 13 M H(2)SO(4) was investigated by (99)Tc NMR, UV-visible and X-ray absorption fine structure (XAFS) spectroscopy. Experimental results and first principles calculations show the formation of Tc(+5) sulfate complexes. The results expand the fundamental understanding of Tc in high acid solutions.


Subject(s)
Coordination Complexes/chemistry , Methanol/chemistry , Sulfuric Acids/chemistry , Technetium/chemistry , Molecular Conformation , X-Ray Absorption Spectroscopy
16.
Nucl Med Biol ; 40(1): 3-14, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22998840

ABSTRACT

The advent of antibody-based cancer therapeutics has led to the concomitant rise in the development of companion diagnostics for these therapies, particularly nuclear imaging agents. A number of radioisotopes have been employed for antibody-based PET and SPECT imaging, notably 64Cu, ¹²4I, ¹¹¹In, and (99m)Tc; in recent years, however, the field has increasingly focused on 89Zr, a radiometal with near ideal physical and chemical properties for immunoPET imaging. In the review at hand, we seek to provide a comprehensive portrait of the current state of 89Zr radiochemical and imaging research, including work into the production and purification of the isotope, the synthesis of new chelators, the development of new bioconjugation strategies, the creation of novel 89Zr-based agents for preclinical imaging studies, and the translation of 89Zr-labeled radiopharmaceuticals to the clinic. Particular attention will also be dedicated to emerging trends in the field, 89Zr-based imaging applications using vectors other than antibodies, the comparative advantages and limitations of 89Zr-based imaging compared to that with other isotopes, and areas that would benefit from more extensive investigation. At bottom, it is hoped that this review will provide both the experienced investigator and new scientist with a full and critical overview of this exciting and fast-developing field.


Subject(s)
Positron-Emission Tomography/methods , Radiochemistry/methods , Radioisotopes , Zirconium/chemistry , Animals , Humans , Zirconium/isolation & purification , Zirconium/metabolism
17.
J Phys Chem C Nanomater Interfaces ; 116(30): 15867-15877, 2012 Aug 02.
Article in English | MEDLINE | ID: mdl-22962625

ABSTRACT

Metalloporphyrin and metallophthalocyanine dyes ligating Hf(IV) and Zr(IV) ions bind to semiconductor oxide surfaces such as TiO(2) via the protruding group IV metal ions. The use of oxophylic metal ions with large ionic radii that protrude from the macrocycle is a unique mode of attaching chromophores to oxide surfaces in the design of dye-sensitized solar cells (DSSCs). Our previous report on the structure and physical properties of ternary complexes wherein the Hf(IV) and Zr(IV) ions are ligated to both a porphyrinoid and to a defect site on a polyoxometalate (POM) represents a model for this new way of binding dyes to oxide surfaces. The Zr(IV) and Hf(IV) complexes of 5,10,15,20-tetraphenylporphyrin (TPP) with two ligated acetates, (TPP)Hf(OAc)(2) and (TPP)Zr(OAc)(2), and the corresponding metallophthalocyanine (Pc) diacetate complexes, (Pc)Hf(OAc)(2) and (Pc)Zr(OAc)(2), were evaluated as novel dyes for the fabrication of dye-sensitized solar cells. Similarly to the ternary complexes with the POM, the oxide surface replaces the acetates to affect binding. In DSSCs the Zr(IV) phthalocyanine dye performs better than the Zr(IV) porphyrin dye, and reaches an overall efficiency of ~ 1.0%. The Hf(IV) dyes are less efficient. The photophysical properties of these complexes in solution suggested energetically favorable injection of electrons into the conduction band of TiO(2) semiconductor nanoparticles, as well as a good band gap match with I(3) (-)/I(-) pair in liquid 1-butyl-3-methyl imidazolium iodide. The combination of blue absorbing TPP with the red absorbing Pc complexes can increase the absorbance of solar light in the device; however, the overall conversion efficiency of DSSCs using TiO(2) nanoparticles treated with a mixture of both Zr(IV) complexes is comparable, but not greater than, the single (Pc)Zr. Thus, surface bound (TPP)Zr increases the absorbance in blue region of the spectra, but at the cost of diminished absorbance in the red in this DSSC architecture.

18.
Inorg Chem ; 51(16): 9017-28, 2012 Aug 20.
Article in English | MEDLINE | ID: mdl-22839965

ABSTRACT

The radioactive element technetium-99 ((99)Tc, half-life = 2.1 × 10(5) years, ß(-) of 253 keV), is a major byproduct of (235)U fission in the nuclear fuel cycle. (99)Tc is also found in radioactive waste tanks and in the environment at National Lab sites and fuel reprocessing centers. Separation and storage of the long-lived (99)Tc in an appropriate and stable waste-form is an important issue that needs to be addressed. Considering metal oxide solid-state materials as potential storage matrixes for Tc, we are examining the redox speciation of Tc on the molecular level using polyoxometalates (POMs) as models. In this study we investigate the electrochemistry of Tc complexes of the monovacant Wells-Dawson isomers, α(1)-P(2)W(17)O(61)(10-) (α1) and α(2)-P(2)W(17)O(61)(10-) (α2) to identify features of metal oxide materials that can stabilize the immobile Tc(IV) oxidation state accessed from the synthesized Tc(V)O species and to interrogate other possible oxidation states available to Tc within these materials. The experimental results are consistent with density functional theory (DFT) calculations. Electrochemistry of K(7-n)H(n)[Tc(V)O(α(1)-P(2)W(17)O(61))] (Tc(V)O-α1), K(7-n)H(n)[Tc(V)O(α(2)-P(2)W(17)O(61))] (Tc(V)O-α2) and their rhenium analogues as a function of pH show that the Tc-containing derivatives are always more readily reduced than their Re analogues. Both Tc and Re are reduced more readily in the lacunary α1 site as compared to the α2 site. The DFT calculations elucidate that the highest oxidation state attainable for Re is VII while, under the same electrochemistry conditions, the highest oxidation state for Tc is VI. The M(V)→ M(IV) reduction processes for Tc(V)O-α1 are not pH dependent or only slightly pH dependent suggesting that protonation does not accompany reduction of this species unlike the M(V)O-α2 (M = (99)Tc, Re) and Re(V)O-α1 where M(V/IV) reduction process must occur hand in hand with protonation of the terminal M═O to make the π*(M═O) orbitals accessible to the addition of electrons. This result is consistent with previous extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) data that reveal that the Tc(V) is "pulled" into the -α1 framework and that may facilitate the reduction of Tc(V)O-α1 and stabilize lower Tc oxidation states. This study highlights the inequivalency of the two sites, and their impact on the chemical properties of the Tc substituted in these positions.


Subject(s)
Chelating Agents/chemistry , Electrons , Oxides/chemistry , Rhenium/chemistry , Technetium/chemistry , Tungsten Compounds/chemistry , Electrochemistry , Hydrogen-Ion Concentration , Models, Molecular , Molecular Structure , Oxidation-Reduction , Quantum Theory , Radioactive Waste , Thermodynamics
19.
Cancer Biother Radiopharm ; 26(5): 547-56, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21970319

ABSTRACT

Melanoma is a malignancy with increasing incidence. Although primary tumors that are localized to the skin can be successfully treated by surgical removal, there is no satisfactory treatment for metastatic melanoma, a condition that has currently an estimated 5-year survival of just 6%. During the last decade, ß- or α-emitter-radiolabeled peptides that bind to different receptors on a variety of tumors have been investigated as potential therapeutic agents in both the preclinical and clinical settings with encouraging results. A recent study demonstrated that 188-Rhenium ((188)Re)-labeled, via HYNIC ligand, fungal melanin-binding decapeptide 4B4 was effective against experimental MNT1 human melanoma and was safe to normal melanized tissues. The availability of radiolanthanides with diverse nuclear emission schemes and half-lives provides an opportunity to expand the repertoire of peptides for radionuclide therapy of melanoma. The melanin-binding decapeptide 4B4 was radiolabeled with (177)Lu, (166)Ho, and (153)Sm via a DO3A chelate. The stability studies of Ln*-DO3A-4B4 in phosphate-buffered saline, serum, and a hydroxyapatite assay demonstrated that (177)Lu-labeled peptide was more stable than (166)Ho- and (153)Sm-labeled peptides, most likely because of the smallest ionic radius of the former allowing for better complexation with DO3A. Binding of Ln*-DO3A-4B4 to the lysed highly melanized MNT1 melanoma cells demonstrated the specificity of peptides binding to melanin. In vivo biodistribution data for (177)Lu-DO3A-4B4 given by intraperitoneal administration to lightly pigmented human metastatic A2058 melanoma-bearing mice demonstrated very high uptake in the kidneys and low tumor uptake. Intravenous administration did not improve the tumor uptake. The plausible explanation of low tumor uptake of (177)Lu-DO3A-4B4 could be its decreased ability to bind to melanin during in vitro binding studies in comparison with (188)Re-HYNIC-4B4, exacerbated by the very fast clearance from the blood and the kidneys "sink" effect.


Subject(s)
Lanthanoid Series Elements/pharmacology , Melanins/metabolism , Melanoma/diagnostic imaging , Melanoma/metabolism , Oligopeptides/pharmacology , Amino Acid Sequence , Animals , Cell Line, Tumor , Drug Delivery Systems/methods , Female , Humans , Lanthanoid Series Elements/chemistry , Lanthanoid Series Elements/pharmacokinetics , Melanoma/radiotherapy , Mice , Mice, Nude , Oligopeptides/chemistry , Oligopeptides/pharmacokinetics , Radionuclide Imaging , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/pharmacology , Xenograft Model Antitumor Assays
20.
J Am Chem Soc ; 133(46): 18802-15, 2011 Nov 23.
Article in English | MEDLINE | ID: mdl-21985281

ABSTRACT

Technetium-99 ((99)Tc) (ß(-)(max): 293.7 keV; t(1/2): 2.1 × 10(5) years) is a byproduct of uranium-235 fission and comprises a large component of radioactive waste. Under aerobic conditions and in a neutral-basic environment, the pertechnetate anion ((99)TcO(4)(-)) is stable. (99)TcO(4)(-) is very soluble, migrates easily through the environment and does not sorb well onto mineral surfaces, soils, or sediments. This study moves forward a new strategy for the reduction of (99)TcO(4)(-) and the chemical incorporation of the reduced (99)Tc into a metal oxide material. This strategy employs a single material, a polyoxometalate (POM), α(2)-[P(2)W(17)O(61)](10-), that can be photoactivated in the presence of 2-propanol to transfer electrons to (99)TcO(4)(-) and incorporate the reduced (99)Tc covalently into the α(2)-framework to form the (99)Tc(V)O species, (99)Tc(V)O(α(2)-P(2)W(17)O(61))(7-). This occurs via the formation of an intermediate species that slowly converts to (99)Tc(V)O(α(2)-P(2)W(17)O(61))(7-). Extended X-ray absorption fine structure and X-ray absorption near-edge spectroscopy analysis suggests that the intermediate consists of a (99)Tc(IV) α(2)- species where the (99)Tc is likely bound to two of the four W-O oxygen atoms in the α(2)-[P(2)W(17)O(61)](10-) defect. This intermediate then oxidizes and converts to the (99)Tc(V)O(α(2)-P(2)W(17)O(61))(7-) product. The reduction and incorporation of (99)TcO(4)(-) was accomplished in a "one pot" reaction using both sunlight and UV irradiation and monitored as a function of time using multinuclear nuclear magnetic resonance and radio thin-layer chromatography. The process was further probed by the "step-wise" generation of reduced α(2)-P(2)W(17)O(61)(12-) through bulk electrolysis followed by the addition of (99)TcO(4)(-). The reduction and incorporation of ReO(4)(-), as a nonradioactive surrogate for (99)Tc, does not proceed through the intermediate species, and Re(V)O is incorporated quickly into the α(2)-[P(2)W(17)O(61)](10-) defect. These observations are consistent with the periodic trends of (99)Tc and Re. Specifically, (99)Tc is more easily reduced compared to Re. In addition to serving as models for metal oxides, POMs may also provide a suitable platform to study the molecular level dynamics and the mechanisms of the reduction and incorporation of (99)Tc into a material.


Subject(s)
Light , Metal Nanoparticles/chemistry , Oxides/chemistry , Sodium Pertechnetate Tc 99m/chemistry , Technetium/chemistry , Electrochemistry , Models, Molecular , Oxidation-Reduction , Photochemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...