Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 11(1): 5125, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33664290

ABSTRACT

Understanding the true nature of extra-terrestrial water and organic matter that were present at the birth of our solar system, and their subsequent evolution, necessitates the study of pristine astromaterials. In this study, we have studied both the water and organic contents from a dust particle recovered from the surface of near-Earth asteroid 25143 Itokawa by the Hayabusa mission, which was the first mission that brought pristine asteroidal materials to Earth's astromaterial collection. The organic matter is presented as both nanocrystalline graphite and disordered polyaromatic carbon with high D/H and 15N/14N ratios (δD = + 4868 ± 2288‰; δ15N = + 344 ± 20‰) signifying an explicit extra-terrestrial origin. The contrasting organic feature (graphitic and disordered) substantiates the rubble-pile asteroid model of Itokawa, and offers support for material mixing in the asteroid belt that occurred in scales from small dust infall to catastrophic impacts of large asteroidal parent bodies. Our analysis of Itokawa water indicates that the asteroid has incorporated D-poor water ice at the abundance on par with inner solar system bodies. The asteroid was metamorphosed and dehydrated on the formerly large asteroid, and was subsequently evolved via late-stage hydration, modified by D-enriched exogenous organics and water derived from a carbonaceous parent body.

3.
Space Sci Rev ; 214(1)2018 02.
Article in English | MEDLINE | ID: mdl-30713357

ABSTRACT

OSIRIS-REx will return pristine samples of carbonaceous asteroid Bennu. This article describes how pristine was defined based on expectations of Bennu and on a realistic understanding of what is achievable with a constrained schedule and budget, and how that definition flowed to requirements and implementation. To return a pristine sample, the OSIRIS-REx spacecraft sampling hardware was maintained at level 100 A/2 and <180 ng/cm2 of amino acids and hydrazine on the sampler head through precision cleaning, control of materials, and vigilance. Contamination is further characterized via witness material exposed to the spacecraft assembly and testing environment as well as in space. This characterization provided knowledge of the expected background and will be used in conjunction with archived spacecraft components for comparison with the samples when they are delivered to Earth for analysis. Most of all, the cleanliness of the OSIRIS-REx spacecraft was achieved through communication among scientists, engineers, managers, and technicians.

4.
Science ; 338(6108): 785-8, 2012 Nov 09.
Article in English | MEDLINE | ID: mdl-23065902

ABSTRACT

Tissint (Morocco) is the fifth martian meteorite collected after it was witnessed falling to Earth. Our integrated mineralogical, petrological, and geochemical study shows that it is a depleted picritic shergottite similar to EETA79001A. Highly magnesian olivine and abundant glass containing martian atmosphere are present in Tissint. Refractory trace element, sulfur, and fluorine data for the matrix and glass veins in the meteorite indicate the presence of a martian surface component. Thus, the influence of in situ martian weathering can be unambiguously distinguished from terrestrial contamination in this meteorite. Martian weathering features in Tissint are compatible with the results of spacecraft observations of Mars. Tissint has a cosmic-ray exposure age of 0.7 ± 0.3 million years, consistent with those of many other shergottites, notably EETA79001, suggesting that they were ejected from Mars during the same event.


Subject(s)
Mars , Meteoroids , Carbon Isotopes/analysis , Iron Compounds/analysis , Magnesium Compounds/analysis , Nitrogen Isotopes/analysis , Oxygen Isotopes/analysis , Silicates/analysis
5.
Science ; 313(5794): 1763-5, 2006 Sep 22.
Article in English | MEDLINE | ID: mdl-16931721

ABSTRACT

Asteroidal material, delivered to Earth as meteorites, preserves a record of the earliest stages of planetary formation. High-precision oxygen isotope analyses for the two major groups of stony-iron meteorites (main-group pallasites and mesosiderites) demonstrate that each group is from a distinct asteroidal source. Mesosiderites are isotopically identical to the howardite-eucrite-diogenite clan and, like them, are probably derived from the asteroid 4 Vesta. Main-group pallasites represent intermixed core-mantle material from a single disrupted asteroid and have no known equivalents among the basaltic meteorites. The stony-iron meteorites demonstrate that intense asteroidal deformation accompanied planetary accretion in the early Solar System.


Subject(s)
Evolution, Planetary , Meteoroids , Minor Planets , Oxygen Isotopes
6.
Anal Chem ; 74(7): 1665-73, 2002 Apr 01.
Article in English | MEDLINE | ID: mdl-12033258

ABSTRACT

We have developed a new technique in which a solid reagent, cobalt(III) fluoride, is used to prepare oxygen gas for isotope ratio measurement from water derived either from direct injection or from the pyrolysis of solid samples. The technique uses continuous flow, isotope ratio monitoring, gas chromatography/mass spectrometry (irmGC/MS) to measure the delta18O and delta17O of the oxygen gas. Water from appropriate samples is evolved by a procedure of stepped pyrolysis (0-1000 degrees C, typically in 50 degrees C increments) under a flowing stream of helium carrier gas. The method has considerable advantages over others used for water analysis in that it is quick; requires only small samples, typically 1-50 mg of whole rock samples (corresponding to approximately 0.2 micromol of H2O); and the reagent is easy and safe to handle. Reproducibility in isotope ratio measurement obtained from pyrolysis of samples of a terrestrial solid standard are delta18O +/- 0.54, delta17O +/- 0.33, and delta17O +/- 0.10/1000, 1sigma in all cases. The technique was developed primarily for the analysis of meteorites, and the efficiency of the method is illustrated herein by results from water standards, solid reference materials, and a sample of the Murchison CM2 meteorite.


Subject(s)
Meteoroids , Oxygen/analysis , Oxygen Isotopes/analysis , Water/chemistry
7.
Science ; 258(5088): 1624-6, 1992 Dec 04.
Article in English | MEDLINE | ID: mdl-17742530

ABSTRACT

One hypothesis for the origin of the nanometer-size diamonds found at the Cretaceous-Tertiary (K-T) boundary is that they are relict interstellar diamond grains carried by a postulated asteroid. The (13)C/(12)C and (15)N/(14)N ratios of the diamonds from two sites in North America, however, show that the diamonds are two component mixtures differing in carbon and nitrogen isotopic composition and nitrogen abundance. Samples from a site from Italy show no evidence for either diamond component. All the isotopic signatures obtained from the K-T boundary are material well distinguished from known meteoritic diamonds, particularly the fine-grain interstellar diamonds that are abundant in primitive chondrites. The K-T diamonds were most likely produced during the impact of the asteroid with Earth or in a plasma resulting from the associated fireball.

SELECTION OF CITATIONS
SEARCH DETAIL
...