Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
J Proteomics ; 304: 105230, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38901800

ABSTRACT

Life cycle of the dimorphic sugarcane smut fungi, Sporisorium scitamineum, involves recognition and mating of compatible saprophytic yeast-like haploid sporidia (MAT-1 and MAT-2) that upon fusion, develop into infective dikaryotic mycelia. Although the dimorphic transition is intrinsically linked with the pathogenicity and virulence of S. scitamineum, it has never been studied using a proteomic approach. In the present study, an iTRAQ-based comparative proteomic analysis of three distinct stages was carried out. The stages were: the dimorphic transition period - haploid sporidial stage (MAT-1 and MAT-2); the transition phase (24 h post co-culturing (hpc)) and the dikaryotic mycelial stage (48 hpc). Functional categorization of differentially abundant proteins showed that the most altered biological processes were energy production, primary metabolism, especially, carbohydrate, amino acid, fatty acid, followed by translation, post-translation and protein turnover. Several differentially abundant proteins (DAPs), especially in the dikaryotic mycelial stage were predicted as effectors. Taken together, key molecular mechanisms underpinning the dimorphic transition in S. scitamineum at the proteome level were highlighted. The catalogue of stage-specific and dimorphic transition-associated-proteins and potential effectors identified herein represents a list of potential candidates for defective mutant screening to elucidate their functional role in the dimorphic transition and pathogenicity in S. scitamineum. BIOLOGICAL SIGNIFICANCE: Being the first comparative proteomics analysis of S. scitamineum, this study comprehensively examined three pivotal life cycle stages of the pathogen: the non-pathogenic haploid phase, the transition phase, and the pathogenic dikaryotic mycelial stage. While previous studies have reported the sugarcane and S. scitamineum interactions, this study endeavored to specifically identify the proteins responsible for pathogenicity. By analyzing the proteomic alterations between the haploid and dikaryotic mycelial phases, the study revealed significant changes in metabolic pathway-associated proteins linked to energy production, notably oxidative phosphorylation, and the citrate cycle. Furthermore, this study successfully identified key metabolic pathways that undergo reprogramming during the transition from the non-pathogenic to the pathogenic stage. The study also deciphered the underlying mechanisms driving the morphological and physiological alterations crucial for the S. scitamineum virulence. By studying its life cycle stages, identifying the key metabolic pathways and stage-specific proteins, it provides unprecedented insights into the pathogenicity and potential avenues for intervention. As proteomics continues to advance, such studies pave the way for a deeper understanding of plant-pathogen interactions and the development of innovative strategies to mitigate the impact of devastating pathogens like S. scitamineum.


Subject(s)
Fungal Proteins , Proteomics , Saccharum , Proteomics/methods , Saccharum/microbiology , Saccharum/metabolism , Fungal Proteins/metabolism , Plant Diseases/microbiology , Proteome/metabolism
2.
J Agric Food Chem ; 71(44): 16827-16839, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37890871

ABSTRACT

Early detection of bovine subclinical mastitis may improve treatment strategies and reduce the use of antibiotics. Herein, individual milk samples from Holstein cows affected by subclinical mastitis induced by S. agalactiae and Prototheca spp. were analyzed by untargeted and targeted mass spectrometry approaches to assess changes in their peptidome profiles and identify new potential biomarkers of the pathological condition. Results showed a higher amount of peptides in milk positive on the bacteriological examination when compared with the negative control. However, the different pathogens seemed not to trigger specific effects on the milk peptidome. The peptides that best distinguish positive from negative samples are mainly derived from the most abundant milk proteins, especially from ß- and αs1-casein, but also include the antimicrobial peptide casecidin 17. These results provide new insights into the physiopathology of mastitis. Upon further validation, the panel of potential discriminant peptides could help the development of new diagnostic and therapeutic tools.


Subject(s)
Mastitis, Bovine , Prototheca , Cattle , Animals , Female , Humans , Streptococcus agalactiae , Mastitis, Bovine/diagnosis , Caseins , Antimicrobial Peptides
3.
Food Res Int ; 172: 113101, 2023 10.
Article in English | MEDLINE | ID: mdl-37689865

ABSTRACT

Cheese production is an applied biotechnology whose proper outcome relies strictly on the complex interactive dynamics which unfold within defined microbial groups. These may start being active from the collection of milk and continue up to its final stages of maturation. One of the critical parameters playing a major role is the milk refrigeration temperature before pasteurization as it can affect the proportion of psychrotrophic taxa abundance in the total milk bacterial population. While a standard temperature of 4 °C is the common choice, due to its general growth control effect, it does have a potential drawback. This is due to the fact that some cold-tolerant genera present a proteolytic activity with uncompleted proliferation, which could negatively affect curd clotting and regular cheese maturation. Moreover, accidental thermal variations of milk before cheese-making, in a plus or minus direction, can occur both at farm collection sites and during transfer to dairy plant. This present research, directly commissioned by a major fresh cheese-producing company, includes an in-factory trial. In this trial, a gradient of temperatures from 4 °C to 13 °C, which were subsequently reversed, was purposely adopted to: (a) verify sensory alterations in the resulting product at different maturation stages, and, (b) analyze, in parallel, using DNA extraction and 16S-metabarcoding sequencing from the same samples, the presence, abundance and corresponding taxonomical identity of all the bacteria featured in communities found in milk and cheese samples. Overall, 1,714 different variants were detected and sorted into 394 identified taxa. Significant bacterial community shifts in cheese were observed in response to milk refrigeration temperature and subsequently associated with samples having altered scores in sensory panel tests. In particular, proteolytic psychrotrophes were outcompeted by Enterobacteriales and by other taxa at the peak temperature of 13 °C, but aggressively increased in the descent phases, upon the cooling down of milk to values of 7 °C. Relevant clues have been collected for better anticipation of thermal abuse effects or parameter variations allowing for improved handling of technical processing conditions by the cheese manufacturing industry.


Subject(s)
Cheese , Microbiota , Animals , Temperature , Milk , Cold Temperature
4.
J Hematol Oncol ; 16(1): 33, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37013641

ABSTRACT

In human cells BRAF oncogene is invariably expressed as a mix of two coding transcripts: BRAF-ref and BRAF-X1. These two mRNA isoforms, remarkably different in the sequence and length of their 3'UTRs, are potentially involved in distinct post-transcriptional regulatory circuits. Herein, we identify PARP1 among the mRNA Binding Proteins that specifically target the X1 3'UTR in melanoma cells. Mechanistically, PARP1 Zinc Finger domain down-regulates BRAF expression at the translational level. As a consequence, it exerts a negative impact on MAPK pathway, and sensitizes melanoma cells to BRAF and MEK inhibitors, both in vitro and in vivo. In summary, our study unveils PARP1 as a negative regulator of the highly oncogenic MAPK pathway in melanoma, through the modulation of BRAF-X1 expression.


Subject(s)
Melanoma , Proto-Oncogene Proteins B-raf , Humans , Vemurafenib , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Indoles/pharmacology , Sulfonamides/pharmacology , Melanoma/genetics , Melanoma/metabolism , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , MAP Kinase Signaling System , Poly (ADP-Ribose) Polymerase-1/genetics
5.
Clin Chim Acta ; 537: 26-37, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36228679

ABSTRACT

BACKGROUND AND AIM: SARS-CoV-2 infection spawns from an asymptomatic condition to a fatal disease. Age, comorbidities, and several blood biomarkers are associated with infection outcome. We searched for biomarkers by untargeted and targeted proteomic analysis of saliva, a source of viral particles and host proteins. METHODS: Saliva samples from 19 asymptomatic and 16 symptomatic SARS-CoV-2 infected subjects, and 20 controls were analyzed by LC-MS/MS for untargeted peptidomic (flow through of 10 kDa filter) and proteomic (trypsin digestion of filter retained proteins) profiling. RESULTS: Peptides from 53 salivary proteins were identified. ADF was detected only in controls, while IL1RA only in infected subjects. PRPs, DSC2, FABP5, his-1, IL1RA, PRH1, STATH, SMR3B, ANXA1, MUC7, ACTN4, IGKV1-33 and TGM3 were significantly different between asymptomatic and symptomatic subjects. Retained proteins were 117, being 11 highly different between asymptomatic and symptomatic (fold change ≥2 or ≤-2). After validation by LC-MS/MS-SRM (selected reaction monitoring analysis), the most significant discriminant proteins at PCA were IL1RA, CYSTB, S100A8, S100A9, CA6, and FABP5. CONCLUSIONS: The differentially abundant proteins involved in innate immunity (S100 proteins), taste (CA6 and cystatins), and viral binding to the host (FABP5), appear to be of interest for use as potential biomarkers and drugs targets.


Subject(s)
COVID-19 , Proteomics , Humans , Chromatography, Liquid , Taste Perception , SARS-CoV-2 , Taste , Tandem Mass Spectrometry , Saliva/metabolism , Biomarkers/metabolism , Immunity, Innate , Fatty Acid-Binding Proteins/metabolism , Transglutaminases/metabolism
6.
Neurobiol Dis ; 174: 105858, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36096339

ABSTRACT

Mutations in SPG11, encoding spatacsin, constitute the major cause of autosomal recessive Hereditary Spastic Paraplegia (HSP) with thinning of the corpus callosum. Previous studies showed that spatacsin orchestrates cellular traffic events through the formation of a coat-like complex and its loss of function results in lysosomal and axonal transport impairments. However, the upstream mechanisms that regulate spatacsin trafficking are unknown. Here, using proteomics and CRISPR/Cas9-mediated tagging of endogenous spatacsin, we identified a subset of 14-3-3 proteins as physiological interactors of spatacsin. The interaction is modulated by Protein Kinase A (PKA)-dependent phosphorylation of spatacsin at Ser1955, which initiates spatacsin trafficking from the plasma membrane to the intracellular space. Our study provides novel insight in understanding spatacsin physio-pathological roles with mechanistic dissection of its associated pathways.


Subject(s)
14-3-3 Proteins , Spastic Paraplegia, Hereditary , Humans , 14-3-3 Proteins/genetics , Cyclic AMP-Dependent Protein Kinases/genetics , Spastic Paraplegia, Hereditary/genetics , Mutation , Corpus Callosum/pathology , Proteins/genetics
7.
J Biol Chem ; 298(9): 102353, 2022 09.
Article in English | MEDLINE | ID: mdl-35944584

ABSTRACT

Despite recent advances in the development of BRAF kinase inhibitors (BRAFi) for BRAF-mutant melanomas, development of resistance remains a major clinical problem. In addition to genetic alterations associated with intrinsic resistance, several adaptive response mechanisms are known to be rapidly activated to allow cell survival in response to treatment, limiting efficacy. A better understanding of the mechanisms driving resistance is urgently needed to improve the success of BRAF-targeted therapies and to make therapeutic intervention more durable. In this study, we identify the mitogen-activated protein kinase (MAPK) p38 as a novel mediator of the adaptive response of melanoma cells to BRAF-targeted therapy. Our findings demonstrate that BRAFi leads to an early increase in p38 activation, which promotes phosphorylation of the transcription factor SOX2 at Ser251, enhancing SOX2 stability, nuclear localization, and transcriptional activity. Furthermore, functional studies show that SOX2 depletion increases sensitivity of melanoma cells to BRAFi, whereas overexpression of a phosphomimetic SOX2-S251E mutant is sufficient to drive resistance and desensitize melanoma cells to BRAFi in vitro and in a zebrafish xenograft model. We also found that SOX2 phosphorylation at Ser251 confers resistance to BRAFi by binding to the promoter and increasing transcriptional activation of the ATP-binding cassette drug efflux transporter ABCG2. In summary, we unveil a p38/SOX2-mediated mechanism of adaptive response to BRAFi, which provides prosurvival signals to melanoma cells against the cytotoxic effects of BRAFi prior to acquiring resistance.


Subject(s)
Melanoma , Proto-Oncogene Proteins B-raf , Adenosine Triphosphate/metabolism , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm , Humans , MAP Kinase Signaling System , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Zebrafish/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
8.
Int J Mol Sci ; 22(12)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203724

ABSTRACT

Numerous studies have shown that hedgehog inhibitors (iHHs) only partially block the growth of tumor cells, especially in vivo. Leukemia often expands in a nutrient-depleted environment (bone marrow and thymus). In order to identify putative signaling pathways implicated in the adaptive response to metabolically adverse conditions, we executed quantitative phospho-proteomics in T-cell acute lymphoblastic leukemia (T-ALL) cells subjected to nutrient-depleted conditions (serum starvation). We found important modulations of peptides phosphorylated by critical signaling pathways including casein kinase, mammalian target of rapamycin, and 5'AMP-activated kinase (AMPK). Surprisingly, in T-ALL cells, AMPK signaling was the most consistently downregulated pathway under serum-depleted conditions, and this coincided with increased GLI1 expression and sensitivity to iHHs, especially the GLI1/2 inhibitor GANT-61. Increased sensitivity to GANT-61 was also found following genetic inactivation of the catalytic subunit of AMPK (AMPKα1) or pharmacological inhibition of AMPK by Compound C. Additionally, patient-derived xenografts showing high GLI1 expression lacked activated AMPK, suggesting an important role for this signaling pathway in regulating GLI1 protein levels. Further, joint targeting of HH and AMPK signaling pathways in T-ALL cells by GANT-61 and Compound C significantly increased the therapeutic response. Our results suggest that metabolic adaptation that occurs under nutrient starvation in T-ALL cells increases responsiveness to HH pathway inhibitors through an AMPK-dependent mechanism and that joint therapeutic targeting of AMPK signaling and HH signaling could represent a valid therapeutic strategy in rapidly expanding tumors where nutrient availability becomes limiting.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Hedgehog Proteins/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Signal Transduction , AMP-Activated Protein Kinases/genetics , Cell Death/drug effects , Culture Media, Serum-Free/pharmacology , Enzyme Activation/drug effects , Humans , Jurkat Cells , Mechanistic Target of Rapamycin Complex 1/metabolism , Pyridines/pharmacology , Pyrimidines/pharmacology , Signal Transduction/drug effects , Zinc Finger Protein GLI1/metabolism
9.
Mol Med Rep ; 23(1)2021 01.
Article in English | MEDLINE | ID: mdl-33179092

ABSTRACT

Uterine leiomyoma presents the highest incidence among benign tumors of the female reproductive tract. The present study compared the proteome of leiomyoma treated with ulipristal acetate with that of untreated leiomyoma to investigate protein expression patterns in relation to oxidative stress. Paired tissue samples from seven treated and untreated leiomyomas were collected and the proteome was analyzed by two­dimensional gel electrophoresis (2­DE). Western blotting was used to validate the results of 2­DE, and mass spectrometry was used to identify proteins. The tissue expression of 30 proteins was markedly affected by treatment with ulipristal acetate. Bioinformatics analysis revealed that several of the differentially expressed proteins were involved in the degradation of hydrogen peroxide and the synthesis of reactive oxygen species. The present study suggested the involvement of oxidative stress as a novel mechanism of action of ulipristal acetate. These findings require further investigations to understand the role of ulipristal acetate in the treatment of the leiomyoma.


Subject(s)
Gene Regulatory Networks/drug effects , Leiomyoma/drug therapy , Norpregnadienes/administration & dosage , Proteomics/methods , Uterine Neoplasms/drug therapy , Adult , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Hydrogen Peroxide/metabolism , Leiomyoma/metabolism , Mass Spectrometry , Norpregnadienes/pharmacology , Oxidative Stress/drug effects , Protein Interaction Maps , Reactive Oxygen Species/metabolism , Uterine Neoplasms/metabolism
10.
ACS Biomater Sci Eng ; 6(10): 5493-5506, 2020 10 12.
Article in English | MEDLINE | ID: mdl-33320567

ABSTRACT

Heart failure is the worst outcome of all cardiovascular diseases and still represents nowadays the leading cause of mortality with no effective clinical treatments, apart from organ transplantation with allogeneic or artificial substitutes. Although applied as the gold standard, allogeneic heart transplantation cannot be considered a permanent clinical answer because of several drawbacks, as the side effects of administered immunosuppressive therapies. For the increasing number of heart failure patients, a biological cardiac substitute based on a decellularized organ and autologous cells might be the lifelong, biocompatible solution free from the need for immunosuppression regimen. A novel decellularization method is here proposed and tested on rat hearts in order to reduce the concentration and incubation time with cytotoxic detergents needed to render acellular these organs. By protease inhibition, antioxidation, and excitation-contraction uncoupling in simultaneous perfusion/submersion modality, a strongly limited exposure to detergents was sufficient to generate very well-preserved acellular hearts with unaltered extracellular matrix macro- and microarchitecture, as well as bioactivity.


Subject(s)
Detergents , Tissue Scaffolds , Extracellular Matrix , Heart , Humans , Perfusion
11.
Anal Bioanal Chem ; 412(30): 8299-8312, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33037906

ABSTRACT

Resurrection plant Ramonda serbica is a suitable model to investigate vegetative desiccation tolerance. However, the detailed study of these mechanisms at the protein level is hampered by the severe tissue water loss, high amount of phenolics and polysaccharide, and possible protein modifications and aggregations during the extraction and purification steps. When applied to R. serbica leaves, widely used protein extraction protocols containing polyvinylpolypyrrolidone and ascorbate, as well as the phenol/SDS/buffer-based protocol recommended for recalcitrant plant tissues failed to eliminate persistent contamination and ensure high protein quality. Here we compared three protein extraction approaches aiming to establish the optimal one for both hydrated and desiccated R. serbica leaves. To evaluate the efficacy of these protocols by shotgun proteomics, we also created the first R. serbica annotated transcriptome database, available at http://www.biomed.unipd.it/filearrigoni/Trinity_Sample_RT2.fasta . The detergent-free phenol-based extraction combined with dodecyl-ß-D-maltoside-assisted extraction enabled high-yield and high-purity protein extracts. The phenol-based protocol improved the protein-band resolution, band number, and intensity upon electrophoresis, and increased the protein yield and the number of identified peptides and protein groups by LC-MS/MS. Additionally, dodecyl-ß-D-maltoside enabled solubilisation and identification of more membrane-associated proteins. The presented study paves the way for investigating the desiccation tolerance in R. serbica, and we recommend this protocol for similar recalcitrant plant material.


Subject(s)
Magnoliopsida/chemistry , Plant Leaves/chemistry , Plant Proteins/isolation & purification , Proteomics/methods , Water/chemistry , Chromatography, Liquid/methods , Desiccation , Electrophoresis, Polyacrylamide Gel , Tandem Mass Spectrometry/methods
12.
Cell Rep ; 32(9): 108095, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32877677

ABSTRACT

The mitochondrial permeability transition pore (PTP) is a Ca2+-activated channel that plays a key role in cell death. Thiol oxidation facilitates PTP opening, yet the targets and molecular mechanisms still await a definition. Here, we investigate the role of C141 of F-ATP synthase oligomycin sensitivity conferral protein (OSCP) subunit in PTP modulation by oxidation. We find that the OSCP C141S mutation confers resistance to PTP opening and cell death by diamide and MitoParaquat only when cyclophilin D (CyPD) has been ablated, a protective role that can be explained by CyPD shielding C141 from oxidants. The mutation decreases apoptosis in zebrafish embryos, indicating that this OSCP residue is involved in development. Site-directed mutagenesis in yeast suggests that other conserved cysteines in the α, γ, and c subunits of F-ATP synthase are not involved in PTP modulation. Thus, OSCP provides a strategic site that regulates PTP opening by the interplay between CyPD (un)binding and thiol oxidation-reduction.


Subject(s)
Cysteine/metabolism , Mitochondrial Permeability Transition Pore/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Permeability , Humans
13.
J Agric Food Chem ; 68(28): 7541-7553, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32608980

ABSTRACT

Protein hydrolysate (PH)-based biostimulants offer a cost-effective and sustainable approach for the regulation of physiological processes in plants to stimulate growth and improve stress tolerance. Understanding the mode of action of PHs is challenging, but it is indispensable to improve existing candidates and to develop novel molecules with enhanced stimulatory effects. Hence, the present study aimed to understand the proteome level responses in the B73 maize roots treated with APR, a PH biostimulant, at two increasing concentrations and to compare and integrate it with the transcriptomic data obtained previously under identical experimental conditions. Results indicate that APR induced dose-dependent global changes in the transcriptome and proteome of maize roots. APR treatment altered the expression and abundance of several genes and proteins related to redox homeostasis, stress response, glycolysis, tricarboxylic acid cycle, pentose phosphate pathway, and other metabolic pathways of carbohydrates, amino acids, and lipids. Further, metabolic processes of phytohormone, secondary metabolites, especially phenylpropanoids, flavonoids, and terpenoids and transport, and cytoskeletal reorganization associated mechanisms were stimulated. Our results suggest that APR treatment altered the redox homeostasis and thus triggered an oxidative signal. This could be one of the key regulators of the cascade of downstream events involving multiple signaling, hormonal, and metabolic pathways, resulting in an altered physiological and metabolic state which consequently could lead to improved growth and stress adaptation observed in biostimulant-treated plants.


Subject(s)
Plant Proteins/genetics , Protein Hydrolysates/pharmacology , Zea mays/drug effects , Zea mays/genetics , Gene Expression Regulation, Plant/drug effects , Plant Proteins/chemistry , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Protein Hydrolysates/chemistry , Proteomics , Transcriptome/drug effects , Zea mays/growth & development , Zea mays/metabolism
14.
Clin Chem Lab Med ; 58(6): 968-979, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32229654

ABSTRACT

Background The sensitivities and specificities of C-reactive protein (CRP) and faecal calprotectin (fCal), as recommended for inflammatory bowel diseases (IBD) diagnosis and monitoring, are low. Our aim was to discover new stool protein/peptide biomarkers for diagnosing IBD. Methods For peptides, MALDI-TOF/MS (m/z 1000-4000) was performed using stools from an exploratory (34 controls; 72 Crohn's disease [CD], 56 ulcerative colitis [UC]) and a validation (28 controls, 27 CD, 15 UC) cohort. For proteins, LTQ-Orbitrap XL MS analysis (6 controls, 5 CD, 5 UC) was performed. Results MALDI-TOF/MS spectra of IBD patients had numerous features, unlike controls. Overall, 426 features (67 control-associated, 359 IBD-associated) were identified. Spectra were classified as control or IBD (absence or presence of IBD-associated features). In the exploratory cohort, the sensitivity and specificity of this classification algorithm were 81% and 97%, respectively. Blind analysis of the validation cohort confirmed 97% specificity, with a lower sensitivity (55%) paralleling active disease frequency. Following binary logistic regression analysis, IBD was independently correlated with MALDI-TOF/MS spectra (p < 0.0001), outperforming fCal measurements (p = 0.029). The IBD-correlated m/z 1810.8 feature was a fragment of APC2, homologous with APC, over-expressed by infiltrating cells lining the surface in UC or the muscularis-mucosae in CD (assessed by immunohistochemistry). IBD-associated over-expressed proteins included immunoglobulins and neutrophil proteins, while those under-expressed comprised proteins of the nucleic acid assembly or those (OLFM4, ENPP7) related to cancer risk. Conclusions Our study provides evidence for the clinical utility of a novel proteomic method for diagnosing IBD and insight on the pathogenic role of APC. Moreover, the newly described IBD-associated proteins might become tools for cancer risk assessment in IBD patients.


Subject(s)
Feces/chemistry , Inflammatory Bowel Diseases/diagnosis , Inflammatory Bowel Diseases/etiology , Peptides/metabolism , Proteomics , Adult , Biomarkers/metabolism , Cohort Studies , Female , Humans , Inflammatory Bowel Diseases/metabolism , Male , Middle Aged , Reproducibility of Results
15.
Atherosclerosis ; 298: 27-35, 2020 04.
Article in English | MEDLINE | ID: mdl-32169720

ABSTRACT

BACKGROUND AND AIMS: Reduced bioavailability of nitric oxide (NO) has been implicated in the pathogenesis of calcific aortic stenosis. Herein, we investigated the effects of l-Arginine, the main precursor of NO, on the osteogenic differentiation of aortic interstitial valve cells (VICs). METHODS: We isolated a clonal population of bovine VICs that expresses osteogenic markers and induces calcification of collagen matrix after stimulation with endotoxin (LPS 500 ng/mL). VICs were treated in vitro with different combinations of LPS ± l-Arginine (50 or 100 mM) and cell extracts were collected to perform proteomic (iTRAQ) and gene expression (RT-PCR) analysis. RESULTS: l-Arginine prevents the over-expression of alkaline phosphatase (ALP, p < 0.001) and reduces matrix calcification (p < 0.05) in VICs treated with LPS. l-Arginine also reduces the over-expression of inflammatory molecules induced by LPS (TNF-alpha, IL-6 and IL-1beta, p < 0.001). The proteomic analysis allowed to identify 49 proteins with an altered expression profile after stimulation with LPS and significantly modified by l-Arginine. These include proteins involved in the redox homeostasis of the cells (i.e. Xanthine Oxidase, Catalase, Aldehyde Oxidase), remodeling of the extracellular matrix (i.e. ADAMTSL4, Basigin, COL3A1) and cellular signaling (i.e. Fibrillin-1, Legumain, S100A13). The RT-PCR analysis confirmed the modifications of Fibrillin-1, ADAMTSL4, Basigin and Xanthine Oxidase, whose expression levels increase after stimulation with LPS and are reduced by l-Arginine (p < 0.05). CONCLUSIONS: l-Arginine prevents osteogenic differentiation of VICs and reduces matrix calcification. This effect is achieved through the modulation of proteins involved in the cellular redox system, remodeling of extracellular matrix and inflammatory activation of VICs.


Subject(s)
Aortic Valve Stenosis/metabolism , Aortic Valve/drug effects , Aortic Valve/pathology , Arginine/metabolism , Arginine/pharmacology , Arteritis/metabolism , Calcinosis/metabolism , Alkaline Phosphatase/antagonists & inhibitors , Alkaline Phosphatase/metabolism , Animals , Aortic Valve/cytology , Aortic Valve/metabolism , Cattle , Cell Differentiation/drug effects , Cells, Cultured , Osteogenesis/drug effects , Proteomics
16.
Angew Chem Int Ed Engl ; 59(16): 6607-6611, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32022419

ABSTRACT

In the brain of individuals with Alzheimer's disease, the regulatory protein ubiquitin is found conjugated to different lysine residues of tau protein assembled into pathological paired helical filaments. To shed light on the hitherto unexplored ubiquitination-linked conformational transitions of tau, the availability of in vitro ubiquitin conjugation methods is of primary importance. In our work, we focused on the four-repeat domain of tau and assembled an enzymatic machinery formed by UBE1, Ubc13, and CHIP enzymes. The enzymatic reaction resulted in monoubiquitination at multiple sites, reminiscent of the ubiquitination pattern observed in vivo. We further exploited chemoselective disulfide coupling reactions to construct three tau regioisomers with site-specific monoubiquitination. Protein aggregation experiments revealed that the multiple enzyme-derived products were unable to convert into amyloid fibrils, while the semisynthetic conjugates exhibited diverse capability to form filaments. This study contributes novel insight into the effects of a key post-translational modification on aberrant protein self-assembly.


Subject(s)
Peptides/metabolism , Protein Aggregates , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism , tau Proteins/chemistry , Amino Acid Sequence , Amyloid/metabolism , Humans , Mutagenesis, Site-Directed , Peptides/chemistry , Stereoisomerism , Ubiquitination , tau Proteins/genetics , tau Proteins/metabolism
17.
Neurotoxicology ; 75: 209-220, 2019 12.
Article in English | MEDLINE | ID: mdl-31585128

ABSTRACT

Impairment of the axonal transport system mediated by intracellular microtubules (MTs) is known to be a major drawback in neurodegenerative processes. Due to a growing interest on the neurotoxic effects of selenium in environmental health, our study aimed to assess the relationship between selenium and MTs perturbation, that may favour disease onset over a genetic predisposition to amyotrophic lateral sclerosis. We treated a neuron-like cell line with sodium selenite, sodium selenate and seleno-methionine and observed that the whole cytoskeleton was affected. We then investigated the protein interactome of cells overexpressing αTubulin-4A (TUBA4A) and found that selenium increases the interaction of TUBA4A with DNA- and RNA-binding proteins. TUBA4A ubiquitination and glutathionylation were also observed, possibly due to a selenium-dependent increase of ROS, leading to perturbation and degradation of MTs. Remarkably, the TUBA4A mutants R320C and A383 T, previously described in ALS patients, showed the same post-translational modifications to a similar extent. In conclusion this study gives insights into a specific mechanism characterizing selenium neurotoxicity.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Microtubules/drug effects , Neurons/drug effects , Selenium/toxicity , Amyotrophic Lateral Sclerosis/etiology , Blotting, Western , Cell Line, Tumor , Fluorescent Antibody Technique , HEK293 Cells , Humans , Immunoprecipitation , Microscopy, Confocal , Microtubules/metabolism , Neurons/metabolism , Neurons/ultrastructure , Reactive Oxygen Species/metabolism , Tubulin/metabolism
18.
Nat Commun ; 10(1): 4341, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31554800

ABSTRACT

The molecular identity of the mitochondrial megachannel (MMC)/permeability transition pore (PTP), a key effector of cell death, remains controversial. By combining highly purified, fully active bovine F-ATP synthase with preformed liposomes we show that Ca2+ dissipates the H+ gradient generated by ATP hydrolysis. After incorporation of the same preparation into planar lipid bilayers Ca2+ elicits currents matching those of the MMC/PTP. Currents were fully reversible, were stabilized by benzodiazepine 423, a ligand of the OSCP subunit of F-ATP synthase that activates the MMC/PTP, and were inhibited by Mg2+ and adenine nucleotides, which also inhibit the PTP. Channel activity was insensitive to inhibitors of the adenine nucleotide translocase (ANT) and of the voltage-dependent anion channel (VDAC). Native gel-purified oligomers and dimers, but not monomers, gave rise to channel activity. These findings resolve the long-standing mystery of the MMC/PTP and demonstrate that Ca2+ can transform the energy-conserving F-ATP synthase into an energy-dissipating device.


Subject(s)
Adenosine Triphosphate/metabolism , Calcium/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Animals , Cattle , Cryoelectron Microscopy , Hydrolysis , Magnesium/metabolism , Membrane Potential, Mitochondrial , Mitochondria, Heart/enzymology , Mitochondria, Heart/metabolism , Mitochondrial Permeability Transition Pore , Mitochondrial Proton-Translocating ATPases/chemistry , Mitochondrial Proton-Translocating ATPases/ultrastructure , Mitochondrial Transmembrane Permeability-Driven Necrosis , Protein Multimerization , Protein Subunits/chemistry , Protein Subunits/metabolism
19.
Ecotoxicol Environ Saf ; 178: 146-158, 2019 Aug 30.
Article in English | MEDLINE | ID: mdl-31002969

ABSTRACT

Animal manure or bio-solids used as fertilizers are the main routes of antibiotic exposure in the agricultural land, which can have immense detrimental effects on plants. Sulfadiazine (SDZ), belonging to the class of sulfonamides, is one of the most detected antibiotics in the agricultural soil. In this study, the effect of SDZ on the growth, changes in antioxidant metabolite content and enzyme activities related to oxidative stress were analysed. Moreover, the proteome alterations in Arabidopsis thaliana roots in response to SDZ was examined by means of a combined iTRAQ-LC-MS/MS quantitative proteomics approach. A dose-dependent decrease in leaf biomass and root length was evidenced in response to SDZ. Increased malondialdehyde content at higher concentration (2 µM) of SDZ indicated increased lipid peroxidation and suggest the induction of oxidative stress. Glutathione levels were significantly higher compared to control, whereas there was no increase in ascorbate content or the enzyme activities of glutathione metabolism, even at higher concentrations. In total, 48 differentially abundant proteins related to stress/stimuli response followed by transcription and translation, metabolism, transport and other functions were identified. Several proteins related to oxidative, dehydration, salinity and heavy metal stresses were represented. Upregulation of peroxidases was validated with total peroxidase activity. Pathway analysis provided an indication of increased phenylpropanoid biosynthesis. Probable molecular mechanisms altered in response to SDZ are highlighted.


Subject(s)
Anti-Bacterial Agents/toxicity , Arabidopsis/drug effects , Oxidative Stress/drug effects , Proteome/metabolism , Soil Pollutants/toxicity , Sulfadiazine/toxicity , Arabidopsis/growth & development , Arabidopsis/metabolism , Fertilizers/analysis , Manure/analysis , Proteomics/methods , Soil/chemistry
20.
FEBS J ; 286(8): 1561-1575, 2019 04.
Article in English | MEDLINE | ID: mdl-30834696

ABSTRACT

The acronym CK2 (derived from the misnomer 'casein kinase-2') denotes a pleiotropic acidophilic protein kinase implicated in a plethora of cellular functions, whose abnormally high expression correlates with malignancy. CK2 holoenzyme is composed of two catalytic (α and/or α') and two noncatalytic ß-subunits. The ß-subunits are not responsible for either activation or inactivation of the catalytic ones. Hence, to gain additional information about the roles of the individual CK2 subunits, we have generated C2C12 myoblasts entirely devoid either of both catalytic subunits, or of the ß-subunit. Here, we show that while CK2α/α'(-/-) cells grow similarly to wild-type cells, the growth of CK2ß(-/-) cells is severely impaired, consistent with the hypothesis that not all cellular functions of the ß-subunit are mediated by CK2 holoenzyme. To get a deeper insight into the functional implications of the ß-subunit, a quantitative proteomics study of CK2ß(-/-) cells was performed, leading to the identification and quantification of more than 1200 proteins. Of these, 187 showed a significantly altered expression (fold change ≥ 1.5 or ≤ -1.5) as compared to wild-type cells. A functional analysis of these proteins discloses the implication of CK2ß in many processes, for example, cell cycle, proliferation, transport, metabolic processes, etc., and in some of which the catalytic subunits of CK2 do not seem to play a relevant role. On the other hand, the pool of ecto-CK2 is not apparently affected by the lack of the ß-subunit. Collectively, our data corroborate the concept that the cellular functions of the ß-subunit of CK2 are partially independent of CK2 holoenzyme.


Subject(s)
Casein Kinase II/metabolism , Myoblasts/metabolism , Proteomics/methods , Animals , Casein Kinase II/genetics , Catalytic Domain , Cell Line , Cell Proliferation , Gene Knockout Techniques , Mice , Protein Subunits , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...