Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 49(9): 963-9, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21561784

ABSTRACT

The molecular dialogue occurring prior to direct contact between the fungal and plant partners of arbuscular-mycorrhizal (AM) symbioses begins with the release of fungal elicitors, so far only partially identified chemically, which can activate specific signaling pathways in the host plant. We show here that the activation of MAPK is also induced by exudates of germinating spores of Gigaspora margarita in cultured cells of the non-leguminous species tobacco (Nicotiana tabacum), as well as in those of the model legume Lotus japonicus. MAPK activity peaked about 15 min after the exposure of the host cells to the fungal exudates (FE). FE were also responsible for a rapid and transient increase in free cytosolic Ca(2+) in Nicotiana plumbaginifolia and tobacco cells, and pre-treatment with a Ca(2+)-channel blocker (La(3+)) showed that in these cells, MAPK activation was dependent on the cytosolic Ca(2+) increase. A partial dependence of MAPK activity on the common Sym pathway could be demonstrated for a cell line of L. japonicus defective for LjSym4 and hence unable to establish an AM symbiosis. Our results show that MAPK activation is triggered by an FE-induced cytosolic Ca(2+) transient, and that a Sym genetic determinant acts to modulate the intensity and duration of this activity.


Subject(s)
Complex Mixtures/pharmacology , Glomeromycota/chemistry , Lotus/enzymology , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinase Kinases/metabolism , Nicotiana/enzymology , Plant Cells/enzymology , Plant Proteins/metabolism , Complex Mixtures/chemistry , Glomeromycota/physiology , Lotus/cytology , Spores, Fungal/chemistry , Spores, Fungal/metabolism , Symbiosis/physiology , Time Factors , Nicotiana/cytology
2.
Plant Signal Behav ; 3(5): 340-1, 2008 May.
Article in English | MEDLINE | ID: mdl-19841665

ABSTRACT

A network of shared intermediates/components and/or common molecular outputs in biotic and abiotic stress signaling has long been known, but the possibility of effective influence between differently triggered stresses (co-protection) is less studied. Recent observations show that wounding induces transient protection in tomato (Solanum lycopersicum L.) to four pathogens with a range of lifestyles, locally and systemically. The contribution of ethylene (ET) in basal but also in wound-induced resistance to each pathogen, although dispensable, is demonstrated to be positive (Botrytis cinerea, Phytophthora capsici) or negative (Fusarium oxysporum, Pseudomonas syringae pv. tomato). Furthermore, the expression of several defense markers is influenced locally and/or systemically by wounding and ET, and might be part of that core of conserved molecular responses whereby an abiotic stress such as wounding imparts co-resistance to biotic stress. In this addendum, we speculate on some of the physiological responses to wounding that might contribute to the modulation of resistance in a more pathogen-specific manner.

3.
Plant Cell Environ ; 30(11): 1357-65, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17897407

ABSTRACT

Many reports point to the existence of a network of regulatory signalling occurring in plants during the interaction with micro-organisms (biotic stress) and abiotic stresses such as wounding. However, the focus is on shared intermediates/components and/or common molecular outputs in differently triggered signalling pathways, and not on the degree and modes of effective influence between abiotic and biotic stresses nor the range of true plant-pathogen interactions open to such influence. We report on local and systemic wound-induced protection in tomato (Solanum lycopersicum L.) to four pathogens with a range of lifestyles (Botrytis cinerea, Fusarium oxysporum f.sp. lycopersici, Phytophthora capsici and Pseudomonas syringae pv. tomato). The role of ethylene (ET) in the phenomenon and in the induction by wounding of several markers of defense was investigated by using the never-ripe tomato mutant plants impaired in ET perception. We showed that PINIIb, PR1b, PR5, PR7 and peroxidase (POD) are influenced locally and/or systemically by wounding and, with the exception of POD activity, by ET perception. We also demonstrated that ET, although not essential, is positively (B. cinerea, P. capsici) or negatively (F. oxysporum, P. syringae pv. tomato) involved not only in basal but also in wound-induced resistance to each pathogen.


Subject(s)
Ethylenes/metabolism , Fungi/physiology , Plant Diseases/microbiology , Pseudomonas syringae/physiology , Solanum lycopersicum/metabolism , Solanum lycopersicum/microbiology , Gene Expression Regulation, Plant , Host-Pathogen Interactions , Peroxidase/genetics , Peroxidase/metabolism , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...