Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Rehabil Res ; 44(1): 92-97, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33395144

ABSTRACT

High-density (HD) electrodes have been introduced in research and diagnostic electromyography. Recent advances in technology offer an opportunity for using the HDEMG signal as biofeedback in stroke rehabilitation. The purpose of this case study was to test the feasibility of using two 5 × 13 electrode arrays for providing real-time HDEMG biofeedback and the preliminary outcome of combining HDEMG biofeedback with robotic wrist exercises over 4 weeks in a person who suffered a stroke 26 months earlier. The isometric wrist flexion/extension task required to keep the paretic agonist activity within variable preset limits with minimal activation of the antagonists. The participant was able to utilize the provided biofeedback interface and after eight sessions significantly decreased co-activation in the antagonist wrist extensor muscles during isometric wrist flexion. The HDEMG biofeedback seems feasible and may be used alone or in combination with robotic therapy for increasing the selectivity of muscle activation after stroke.


Subject(s)
Biofeedback, Psychology , Electromyography , Exercise Therapy , Stroke Rehabilitation , Wrist Joint/physiopathology , Aged , Humans , Isometric Contraction/physiology , Male , Range of Motion, Articular/physiology , Robotics
2.
IEEE Trans Neural Syst Rehabil Eng ; 28(5): 1208-1215, 2020 05.
Article in English | MEDLINE | ID: mdl-32203023

ABSTRACT

We evaluated different muscle excitation estimation techniques, and their sensitivity to Motor Unit (MU) distribution in muscle tissue. For this purpose, the Convolution Kernel Compensation (CKC) method was used to identify the MU spike trains from High-Density ElectroMyoGrams (HDEMG). Afterwards, Cumulative MU Spike Train (CST) was calculated by summing up the identified MU spike trains. Muscle excitation estimation from CST was compared to the recently introduced Cumulative Motor Unit Activity Index (CAI) and classically used Root-Mean-Square (RMS) amplitude envelop of EMG. To emphasize their dependence on the MU distribution further, all three muscle excitation estimates were used to calculate the agonist-antagonist co-activation index. We showed on synthetic HDEMG that RMS envelopes are the most sensitive to MU distribution (10 % dispersion around the real value), followed by the CST (7 % dispersion) and CAI (5 % dispersion). In experimental HDEMG from wrist extensors and flexors of post-stroke subjects, RMS envelopes yielded significantly smaller excitations of antagonistic muscles than CST and CAI. As a result, RMS-based co-activation estimates differed significantly from the ones produced by CST and CAI, illuminating the problem of large diversity of muscle excitation estimates when multiple muscles are studied in pathological conditions. Similar results were also observed in experimental HDEMG of six intact young males.


Subject(s)
Stroke Rehabilitation , Stroke , Wrist , Action Potentials , Electromyography , Humans , Male , Motor Neurons , Muscle, Skeletal
SELECTION OF CITATIONS
SEARCH DETAIL
...