Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Rep ; 22: 100751, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32258439

ABSTRACT

Visualizing mitochondria in living Dictyostelium discoideum cells using fluorescent dyes is often problematic due to variability in staining, metabolism of the dyes, and unknown potential effects of the dyes on mitochondrial function. We show that fluorescent labelling of mitochondria, using an N-terminal mitochondrial localization sequence derived from the D. discoideum protein GcvH1 (glycine cleavage system H1) attached to a red fluorescent protein enables clear mitochondrial imaging. We also show that this labelling has no effect upon mitochondria load or respiratory function.

2.
Neurodegener Dis ; 17(1): 22-30, 2017.
Article in English | MEDLINE | ID: mdl-27602566

ABSTRACT

BACKGROUND: The need for accessible cellular biomarkers of neurodegeneration in carriers of the fragile X mental retardation 1 (FMR1) premutation (PM) alleles. OBJECTIVE: To assess the mitochondrial status and respiration in blood lymphoblasts from PM carriers manifesting the fragile X-associated tremor/ataxia syndrome (FXTAS) and non-FXTAS carriers, and their relationship with the brain white matter lesions. METHODS: Oxygen consumption rates (OCR) and ATP synthesis using a Seahorse XFe24 Extracellular Flux Analyser, and steady-state parameters of mitochondrial function were assessed in cultured lymphoblasts from 16 PM males (including 11 FXTAS patients) and 9 matched controls. The regional white matter hyperintensity (WMH) scores were obtained from MRI. RESULTS: Mitochondrial respiratory activity was significantly elevated in lymphoblasts from PM carriers compared with controls, with a 2- to 3-fold increase in basal and maximum OCR attributable to complex I activity, and ATP synthesis, accompanied by unaltered mitochondrial mass and membrane potential. The changes, which were more advanced in FXTAS patients, were significantly associated with the WMH scores in the supratentorial regions. CONCLUSION: The dramatic increase in mitochondrial activity in lymphoblasts from PM carriers may represent either the early stages of disease (specific alterations in short-lived blood cells) or an activation of the lymphocytes under pathological situations. These changes may provide early, convenient blood biomarkers of clinical involvements.


Subject(s)
Ataxia/blood , Ataxia/diagnostic imaging , Brain/diagnostic imaging , Fragile X Syndrome/blood , Fragile X Syndrome/diagnostic imaging , Tremor/blood , Tremor/diagnostic imaging , White Matter/diagnostic imaging , Adolescent , Aged , Aged, 80 and over , Ataxia/genetics , Biomarkers/blood , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Heterozygote , Humans , Lymphocytes/metabolism , Magnetic Resonance Imaging , Male , Middle Aged , Mitochondria/metabolism , Oxygen Consumption , Regression Analysis , Tremor/genetics
3.
Dis Model Mech ; 9(11): 1295-1305, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27638668

ABSTRACT

In combination with studies of post-mortem Parkinson's disease (PD) brains, pharmacological and genetic models of PD have suggested that two fundamental interacting cellular processes are impaired - proteostasis and mitochondrial respiration. We have re-examined the role of mitochondrial dysfunction in lymphoblasts isolated from individuals with idiopathic PD and an age-matched control group. As previously reported for various PD cell types, the production of reactive oxygen species (ROS) by PD lymphoblasts was significantly elevated. However, this was not due to an impairment of mitochondrial respiration, as is often assumed. Instead, basal mitochondrial respiration and ATP synthesis are dramatically elevated in PD lymphoblasts. The mitochondrial mass, genome copy number and membrane potential were unaltered, but the expression of indicative respiratory complex proteins was also elevated. This explains the increased oxygen consumption rates by each of the respiratory complexes in experimentally uncoupled mitochondria of iPD cells. However, it was not attributable to increased activity of the stress- and energy-sensing protein kinase AMPK, a regulator of mitochondrial biogenesis and activity. The respiratory differences between iPD and control cells were sufficiently dramatic as to provide a potentially sensitive and reliable biomarker of the disease state, unaffected by disease duration (time since diagnosis) or clinical severity. Lymphoblasts from control and PD individuals thus occupy two distinct, quasi-stable steady states; a 'normal' and a 'hyperactive' state characterized by two different metabolic rates. The apparent stability of the 'hyperactive' state in patient-derived lymphoblasts in the face of patient ageing, ongoing disease and mounting disease severity suggests an early, permanent switch to an alternative metabolic steady state. With its associated, elevated ROS production, the 'hyperactive' state might not cause pathology to cells that are rapidly turned over, but brain cells might accumulate long-term damage leading ultimately to neurodegeneration and the loss of mitochondrial function observed post-mortem. Whether the 'hyperactive' state in lymphoblasts is a biomarker specifically of PD or more generally of neurodegenerative disease remains to be determined.


Subject(s)
Lymphocytes/metabolism , Lymphocytes/pathology , Mitochondria/metabolism , Parkinson Disease/metabolism , Parkinson Disease/pathology , AMP-Activated Protein Kinases/metabolism , Adenosine Triphosphate/metabolism , Adult , Age Factors , Cell Line, Transformed , Cell Respiration , Gene Dosage , Genome , Humans , Membrane Potential, Mitochondrial , Oxidative Phosphorylation , Oxygen Consumption , Parkinson Disease/blood , Parkinson Disease/diagnosis , RNA, Messenger/genetics , RNA, Messenger/metabolism , ROC Curve , Reactive Oxygen Species/metabolism , Regression Analysis , Severity of Illness Index
4.
Biochem Pharmacol ; 82(10): 1510-20, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21787754

ABSTRACT

The bewildering complexity of the relationship between genotype and phenotype in human mitochondrial diseases has delayed an understanding of the related cytopathological mechanisms. To explore the relationship between mitochondrial dysfunction in Dictyostelium discoideum and the related cytopathologies, we determined whether the phenotypic outcomes were similar regardless of which D. discoideum mitochondrial gene was targeted for disruption. The disruption of the mitochondrial genes resulted in a similar pattern of phenotypes to those caused by other mitochondrial defects. These include impairment of phototaxis, multicellular development and growth on plates and in liquid medium. As the reduced growth rates could have been due to defective phagocytic or macropinocytic nutrient uptake, these processes were tested but found to be unaffected. Since mitochondria have been associated with Legionella pathogenesis of human macrophages, it was also determined if mitochondrially diseased Dictyostelium strains were better or worse than healthy cells at supporting the growth of Legionella pneumophila. The results revealed that the mitochondrially diseased strains supported greater L. pneumophila growth than the wild type Dictyostelium strain (AX2). Quantitative Northern blotting showed a significant reduction in the level of expression of the entire mitochondrial genome, regardless of which mitochondrial gene was targeted for disruption, suggesting a generalized deficiency in mitochondrial gene expression and function. The phenotypic outcomes were the same as those shown previously to result from chronic hyperactivity of the energy-sensing protein kinase, AMPK, after knockdown of mitochondrial chaperonin 60.


Subject(s)
Dictyostelium/metabolism , Gene Expression Regulation/physiology , Genome, Mitochondrial , Genome, Protozoan , Mitochondria/metabolism , Animals , Legionella pneumophila/physiology
5.
Semin Cell Dev Biol ; 22(1): 120-30, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21129494

ABSTRACT

Mitochondrial diseases are a diverse family of genetic disorders caused by mutations affecting mitochondrial proteins encoded in either the nuclear or the mitochondrial genome. By impairing mitochondrial oxidative phosphorylation, they compromise cellular energy production and the downstream consequences in humans are a bewilderingly complex array of signs and symptoms that can affect any of the major organ systems in unpredictable combinations. This complexity and unpredictability has limited our understanding of the cytopathological consequences of mitochondrial dysfunction. By contrast, in Dictyostelium the mitochondrial disease phenotypes are consistent, measurable "readouts" of dysregulated intracellular signalling pathways. When the underlying genetic defects would produce coordinate, generalized deficiencies in multiple mitochondrial respiratory complexes, the disease phenotypes are mediated by chronic activation of an energy-sensing protein kinase, AMP-activated protein kinase (AMPK). This chronic AMPK hyperactivity maintains mitochondrial mass and cellular ATP concentrations at normal levels, but chronically impairs growth, cell cycle progression, multicellular development, photosensory and thermosensory signal transduction. It also causes the cells to support greater proliferation of the intracellular bacterial pathogen, Legionella pneumophila. Notably however, phagocytic and macropinocytic nutrient uptake are impervious both to AMPK signalling and to these types of mitochondrial dysfunction. Surprisingly, a Complex I-specific deficiency (midA knockout) not only causes the foregoing AMPK-mediated defects, but also produces a dramatic deficit in endocytic nutrient uptake accompanied by an additional secondary defect in growth. More restricted and specific phenotypic outcomes are produced by knocking out genes for nuclear-encoded mitochondrial proteins that are not required for respiration. The Dictyostelium model for mitochondrial disease has thus revealed consistent patterns of sublethal dysregulation of intracellular signalling pathways that are produced by different types of underlying mitochondrial dysfunction.


Subject(s)
Dictyostelium/metabolism , Mitochondrial Diseases/metabolism , AMP-Activated Protein Kinases/metabolism , Animals , Dictyostelium/genetics , Humans , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Models, Biological , Phenotype
6.
Dis Model Mech ; 2(9-10): 479-89, 2009.
Article in English | MEDLINE | ID: mdl-19638422

ABSTRACT

Human patients with mitochondrial diseases are more susceptible to bacterial infections, particularly of the respiratory tract. To investigate the susceptibility of mitochondrially diseased cells to an intracellular bacterial respiratory pathogen, we exploited the advantages of Dictyostelium discoideum as an established model for mitochondrial disease and for Legionella pneumophila pathogenesis. Legionella infection of macrophages involves recruitment of mitochondria to the Legionella-containing phagosome. We confirm here that this also occurs in Dictyostelium and investigate the effect of mitochondrial dysfunction on host cell susceptibility to Legionella. In mitochondrially diseased Dictyostelium strains, the pathogen was taken up at normal rates, but it grew faster and reached counts that were twofold higher than in the wild-type host. We reported previously that other mitochondrial disease phenotypes for Dictyostelium are the result of the activity of an energy-sensing cellular alarm protein, AMP-activated protein kinase (AMPK). Here, we show that the increased ability of mitochondrially diseased cells to support Legionella proliferation is suppressed by antisense-inhibiting expression of the catalytic AMPKalpha subunit. Conversely, mitochondrial dysfunction is phenocopied, and intracellular Legionella growth is enhanced, by overexpressing an active form of AMPKalpha in otherwise normal cells. These results indicate that AMPK signalling in response to mitochondrial dysfunction enhances Legionella proliferation in host cells.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Cell Division , Dictyostelium/microbiology , Legionella pneumophila/cytology , Mitochondria/enzymology , Mitochondria/pathology , Signal Transduction , Animals , Bacterial Infections/microbiology , Cell Proliferation , Chaperonin 60/metabolism , Cytoplasmic Vesicles/microbiology , Dictyostelium/cytology , Dictyostelium/enzymology , Dictyostelium/ultrastructure , Legionella pneumophila/growth & development , Legionella pneumophila/ultrastructure , Mitochondria/microbiology , RNA, Antisense/metabolism , Time Factors
7.
Mol Biol Cell ; 18(5): 1874-86, 2007 May.
Article in English | MEDLINE | ID: mdl-17332500

ABSTRACT

The complex cytopathology of mitochondrial diseases is usually attributed to insufficient ATP. AMP-activated protein kinase (AMPK) is a highly sensitive cellular energy sensor that is stimulated by ATP-depleting stresses. By antisense-inhibiting chaperonin 60 expression, we produced mitochondrially diseased strains with gene dose-dependent defects in phototaxis, growth, and multicellular morphogenesis. Mitochondrial disease was phenocopied in a gene dose-dependent manner by overexpressing a constitutively active AMPK alpha subunit (AMPKalphaT). The aberrant phenotypes in mitochondrially diseased strains were suppressed completely by antisense-inhibiting AMPKalpha expression. Phagocytosis and macropinocytosis, although energy consuming, were unaffected by mitochondrial disease and AMPKalpha expression levels. Consistent with the role of AMPK in energy homeostasis, mitochondrial "mass" and ATP levels were reduced by AMPKalpha antisense inhibition and increased by AMPKalphaT overexpression, but they were near normal in mitochondrially diseased cells. We also found that 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside, a pharmacological AMPK activator in mammalian cells, mimics mitochondrial disease in impairing Dictyostelium phototaxis and that AMPKalpha antisense-inhibited cells were resistant to this effect. The results show that diverse cytopathologies in Dictyostelium mitochondrial disease are caused by chronic AMPK signaling not by insufficient ATP.


Subject(s)
Mitochondrial Diseases/enzymology , Mitochondrial Diseases/pathology , Multienzyme Complexes/metabolism , Protein Serine-Threonine Kinases/metabolism , AMP-Activated Protein Kinases , Adenosine Triphosphate/biosynthesis , Amino Acid Sequence , Animals , Base Sequence , DNA, Protozoan/genetics , Dictyostelium/enzymology , Dictyostelium/genetics , Dictyostelium/growth & development , Gene Dosage , Genes, Protozoan , Humans , Mitochondrial Diseases/genetics , Models, Biological , Molecular Sequence Data , Multienzyme Complexes/antagonists & inhibitors , Multienzyme Complexes/chemistry , Multienzyme Complexes/genetics , Phagocytosis , Photobiology , Pinocytosis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...