Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Plant Biol ; 35: 98-104, 2017 02.
Article in English | MEDLINE | ID: mdl-27918942

ABSTRACT

Plant cell growth can broadly be categorized into either diffuse or tip growth. Here we compare gene regulatory networks (GRNs) controlling growth of hypocotyls and root hairs as examples for diffuse and tip growth, respectively. Accumulating evidence shows that GRNs in both cell types are multi-layered in structure and fine-tuned by transcriptional and post-translational mechanisms. We discuss how these GRNs regulate the expression of proteins controlling cell wall remodeling or other growth regulatory processes. Finally, we highlight how specific regulators within GRNs adjust plant cell growth in response to variable environmental conditions.


Subject(s)
Gene Expression Regulation, Plant , Gene Regulatory Networks , Plant Cells/metabolism , Plant Development , Cell Cycle , Cell Wall/metabolism
2.
Methods Mol Biol ; 1450: 11-21, 2016.
Article in English | MEDLINE | ID: mdl-27424742

ABSTRACT

CRL (Cullin-RING ubiquitin ligase) is the major class of plant E3 ubiquitin ligases. Immunoprecipitation-based methods are useful techniques for revealing interactions among Cullin-RING Ligase (CRL) subunits or between CRLs and other proteins, as well as for detecting poly-ubiquitin modifications of the CRLs themselves. Here, we describe two immunoprecipitation (IP) procedures suitable for CRLs in Arabidopsis: a procedure for IP analysis of CRL subunits and their interactors and a second procedure for in vivo ubiquitination analysis of the CRLs. Both protocols can be divided into two major steps: (1) preparation of cell extracts without disruption of protein interactions and (2) affinity purification of the protein complexes and subsequent detection. We provide a thorough description of all the steps, as well as advice on how to choose proper buffers for these analyses. We also suggest a series of negative controls that can be used to verify the specificity of the procedure.


Subject(s)
Cullin Proteins/isolation & purification , Molecular Biology/methods , Ubiquitin-Protein Ligases/chemistry , Arabidopsis/enzymology , Cullin Proteins/chemistry , Seedlings/chemistry , Seedlings/enzymology , Ubiquitination
3.
Mol Plant ; 8(11): 1623-34, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26277260

ABSTRACT

Cullin-RING E3 ligases (CRLs) regulate different aspects of plant development and are activated by modification of their cullin subunit with the ubiquitin-like protein NEDD8 (NEural precursor cell expressed Developmentally Down-regulated 8) (neddylation) and deactivated by NEDD8 removal (deneddylation). The constitutively photomorphogenic9 (COP9) signalosome (CSN) acts as a molecular switch of CRLs activity by reverting their neddylation status, but its contribution to embryonic and early seedling development remains poorly characterized. Here, we analyzed the phenotypic defects of csn mutants and monitored the cullin deneddylation/neddylation ratio during embryonic and early seedling development. We show that while csn mutants can complete embryogenesis (albeit at a slower pace than wild-type) and are able to germinate (albeit at a reduced rate), they progressively lose meristem activity upon germination until they become unable to sustain growth. We also show that the majority of cullin proteins are progressively neddylated during the late stages of seed maturation and become deneddylated upon seed germination. This developmentally regulated shift in the cullin neddylation status is absent in csn mutants. We conclude that the CSN and its cullin deneddylation activity are required to sustain postembryonic meristem function in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Meristem/metabolism , Arabidopsis/embryology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cullin Proteins/metabolism , Germination , Mutation , Plant Roots/metabolism , Seeds/growth & development , Seeds/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/metabolism
4.
Mol Plant ; 6(5): 1616-29, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23475998

ABSTRACT

The regulation of protein turnover by the ubiquitin proteasome system (UPS) is a major posttranslational mechanism in eukaryotes. One of the key components of the UPS, the COP9 signalosome (CSN), regulates 'cullin-ring' E3 ubiquitin ligases. In plants, CSN participates in diverse cellular and developmental processes, ranging from light signaling to cell cycle control. In this work, we isolated a new plant-specific CSN-interacting F-box protein, which we denominated CFK1 (COP9 INTERACTING F-BOX KELCH 1). We show that, in Arabidopsis thaliana, CFK1 is a component of a functional ubiquitin ligase complex. We also show that CFK1 stability is regulated by CSN and by proteasome-dependent proteolysis, and that light induces accumulation of the CFK1 transcript in the hypocotyl. Analysis of CFK1 knockdown, mutant, and overexpressing seedlings indicates that CFK1 promotes hypocotyl elongation by increasing cell size. Reduction of CSN levels enhances the short hypocotyl phenotype of CFK1-depleted seedlings, while complete loss of CSN activity suppresses the long-hypocotyl phenotype of CFK1-overexpressing seedlings. We propose that CFK1 (and its regulation by CSN) is a novel component of the cellular mechanisms controlling hypocotyl elongation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Arabidopsis/growth & development , F-Box Proteins/metabolism , Hypocotyl/growth & development , SKP Cullin F-Box Protein Ligases/metabolism , Amino Acid Sequence , Arabidopsis/cytology , Arabidopsis/radiation effects , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , COP9 Signalosome Complex , Cell Size/radiation effects , Down-Regulation/radiation effects , F-Box Proteins/chemistry , F-Box Proteins/genetics , Gene Expression Regulation, Plant/radiation effects , Genes, Plant/genetics , Hypocotyl/genetics , Hypocotyl/radiation effects , Light , Molecular Sequence Data , Multiprotein Complexes/metabolism , Mutation/genetics , Peptide Hydrolases/metabolism , Phenotype , Plants, Genetically Modified , Proteasome Endopeptidase Complex/metabolism , Protein Stability/radiation effects , Proteolysis/radiation effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , SKP Cullin F-Box Protein Ligases/chemistry , SKP Cullin F-Box Protein Ligases/genetics , Ubiquitination/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...