Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Braz J Microbiol ; 54(3): 1645-1654, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37036659

ABSTRACT

Microbial L-asparaginase is well known for its application in food industries to reduce acrylamide content in fried starchy food. L-asparaginase produced by Arctic actinomycetes Streptomyces koyangensis SK4 was purified and studied for biochemical characterization. The L-asparaginase was purified with a yield of 15.49% and final specific activity of 179.77 IU/mg of protein. The enzyme exhibited a molecular weight of 43 kDa. The optimum pH and temperature for maximum activity of the purified enzyme were 8.5 °C and 40 °C, respectively. The enzyme expressed maximum activity at an incubation period of 30 min and a substrate concentration of 0.06 M. The enzyme has a low Km value of 0.041 M and excellent substrate specificity toward L-asparagine. The enzyme activity was inhibited by metal ions Ba2+ and Hg2+, while Mn2+ and Mg2+ enhanced the activity. The study evaluated the acrylamide reduction potential of L-asparaginase from Streptomyces koyangensis SK4 in potato chips. The blanching plus L-asparaginase treatment of potato slices resulted in a 50% reduction in acrylamide content. The study illustrated an effective acrylamide reduction strategy in potato chips using L-asparaginase from a psychrophilic actinomycete. Besides the acrylamide reduction potential, L-asparaginase from Streptomyces koyangensis SK4 also did not exhibit any glutaminase or urease activity which is an outstanding feature of L-asparaginase to be used as a chemotherapeutic agent.


Subject(s)
Asparaginase , Streptomyces , Asparaginase/genetics , Asparaginase/metabolism , Acrylamide/chemistry , Acrylamide/metabolism , Streptomyces/metabolism , Temperature
2.
Vet Ital ; 48(3): 269-81, 2012.
Article in English | MEDLINE | ID: mdl-23038073

ABSTRACT

Finfish samples obtained from four retail outlets in Cochin between June 2009 and June 2010 were investigated for the occurrence of Vibrio parahaemolyticus. A total of 182 samples were collected and suspect isolates were identified using standard biochemical tests and were further confirmed by a species-specific tlh gene. V. parahaemolyticus was detected in 45.1% of samples, with demersal fish being more affected than pelagic species. The bacterium was isolated more frequently from the skin and gills of pelagic fish, while the intestine yielded greater numbers of V. parahaemolyticus in demersal fish. The highest incidence of antibiotic resistance was recorded against ampicillin and streptomycin, followed by carbenicillin, cefpodoxime, cephalothin, colistin and amoxycillin; the lowest was against nalidixic acid, tetracycline, chloramphenicol and ciprofloxacin. Multiple drug resistance was prevalent among isolates. Although only a fraction of strains are pathogenic for humans, the time-temperature abuse in markets provides ample scope for these strains to multiply to dangerous levels. The multidrug resistant nature of the strains adds to the gravity of the problem. High V. parahaemolyticus incidence rates in market finfish samples from areas in and around Cochin clearly indicates that control measures should be adopted to reduce post-harvest contamination in seafood and time-temperature abuse in markets to diminish the risk of V. parahaemolyticus infection associated with seafood destined for human consumption.


Subject(s)
Fishes , Vibrio Infections/veterinary , Vibrio parahaemolyticus , Animals , India/epidemiology , Prevalence , Vibrio Infections/epidemiology , Vibrio parahaemolyticus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...