Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 18694, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36333445

ABSTRACT

SARS-CoV-2 exhibits a diverse host species range with variable outcomes, enabling differential host susceptibility studies to assess suitability for pre-clinical countermeasure and pathogenesis studies. Baseline virological, molecular and pathological outcomes were determined among multiple species-one Old World non-human primate (NHP) species (cynomolgus macaques), two New World NHP species (red-bellied tamarins; common marmosets) and Syrian hamsters-following single-dose, atraumatic intranasal administration of SARS-CoV-2/Victoria-01. After serial sacrifice 2, 10 and 28-days post-infection (dpi), hamsters and cynomolgus macaques displayed differential virus biodistribution across respiratory, gastrointestinal and cardiovascular systems. Uniquely, New World tamarins, unlike marmosets, exhibited high levels of acute upper airway infection, infectious virus recovery associated with mild lung pathology representing a host previously unrecognized as susceptible to SARS-CoV-2. Across all species, lung pathology was identified post-clearance of virus shedding (antigen/RNA), with an association of virus particles within replication organelles in lung sections analysed by electron microscopy. Disrupted cell ultrastructure and lung architecture, including abnormal morphology of mitochondria 10-28 dpi, represented on-going pathophysiological consequences of SARS-CoV-2 in predominantly asymptomatic hosts. Infection kinetics and host pathology comparators using standardized methodologies enables model selection to bridge differential outcomes within upper and lower respiratory tracts and elucidate longer-term consequences of asymptomatic SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animals , Tissue Distribution , Administration, Intranasal , Disease Models, Animal , Lung/pathology , Mesocricetus , Macaca fascicularis
2.
Histochem Cell Biol ; 158(4): 383-388, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36006466

ABSTRACT

Eosin Y is a common stain in histology. Although usually used for colourimetric imaging where the dye is used to stain pink/red a range of structures in the tissue, Eosin Y is also a fluorochrome, and has been used in this manner for decades. In this study our aim was to investigate the fluorescence properties of the dye to enable quantification of structures within formalin-fixed paraffin-embedded (FFPE) tissue sections. To do this, FFPE sections of hamster tissue were prepared with haematoxylin and eosin Y dyes. Spectral detection on a confocal laser scanning microscope was used to obtain the fluorescence emission spectra of the eosin Y under blue light. This showed clear spectral differences between the red blood cells and congealed blood, compared to the rest of the section. The spectra were so distinct that it was possible to discern these in fluorescence and multi-photon microscopy. An image analysis algorithm was used to quantify the red blood cells. These analyses could have broad applications in histopathology where differentiation is required, such as the analysis of clotting disorders to haemorrhage or damage from infectious disease.


Subject(s)
Fluorescent Dyes , Formaldehyde , Eosine Yellowish-(YS) , Lung , Microscopy, Confocal , Paraffin Embedding/methods , Tissue Fixation
3.
Microbiome ; 10(1): 123, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35945640

ABSTRACT

BACKGROUND: Effective standardisation of the microbiome field is essential to facilitate global translational research and increase the reproducibility of microbiome studies. In this study, we describe the development and validation of a whole cell reference reagent specific to the gut microbiome by the UK National Institute for Biological Standards and Control. We also provide and test a two-step reporting framework to allow microbiome researchers to quickly and accurately validate choices of DNA extraction, sequencing, and bioinformatic pipelines. RESULTS: Using 20 strains that are commonly found in the gut, we developed a whole cell reference reagent (WC-Gut RR) for the evaluation of the DNA extraction protocols commonly used in microbiome pipelines. DNA was first analysed using the physicochemical measures of yield, integrity, and purity, which demonstrated kits widely differed in the quality of the DNA they produced. Importantly, the combination of the WC-Gut RR and the three physicochemical measures allowed us to differentiate clearly between kit performance. We next assessed the ability of WC-Gut RR to evaluate kit performance in the reconstitution of accurate taxonomic profiles. We applied a four-measure framework consisting of Sensitivity, false-positive relative abundance (FPRA), Diversity, and Similarity as previously described for DNA reagents. Using the WC-Gut RR and these four measures, we could reliably identify the DNA extraction kits' biases when using with both 16S rRNA sequencing and shotgun sequencing. Moreover, when combining this with complementary DNA standards, we could estimate the relative bias contributions of DNA extraction kits vs bioinformatic analysis. Finally, we assessed WC-Gut RR alongside other commercially available reagents. The analysis here clearly demonstrates that reagents of lower complexity, not composed of anaerobic and hard-to-lyse strains from the gut, can artificially inflate the performance of microbiome DNA extraction kits and bioinformatic pipelines. CONCLUSIONS: We produced a complex whole cell reagent that is specific for the gut microbiome and can be used to evaluate and benchmark DNA extractions in microbiome studies. Used alongside a DNA standard, the NIBSC DNA-Gut-Mix RR helps estimating where biases occur in microbiome pipelines. In the future, we aim to establish minimum thresholds for data quality through an interlaboratory collaborative study. Video Abstract.


Subject(s)
Microbiota , DNA/genetics , DNA, Bacterial/genetics , Feces , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Reproducibility of Results
4.
Sci Rep ; 10(1): 21774, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33311596

ABSTRACT

Tuberculosis (TB) preclinical testing relies on in vivo models including the mouse aerosol challenge model. The only method of determining colony morphometrics of TB infection in a tissue in situ is two-dimensional (2D) histopathology. 2D measurements consider heterogeneity within a single observable section but not above and below, which could contain critical information. Here we describe a novel approach, using optical clearing and a novel staining procedure with confocal microscopy and mesoscopy, for three-dimensional (3D) measurement of TB infection within lesions at sub-cellular resolution over a large field of view. We show TB morphometrics can be determined within lesion pathology, and differences in infection with different strains of Mycobacterium tuberculosis. Mesoscopy combined with the novel CUBIC Acid-Fast (CAF) staining procedure enables a quantitative approach to measure TB infection and allows 3D analysis of infection, providing a framework which could be used in the analysis of TB infection in situ.


Subject(s)
Microscopy/methods , Staining and Labeling/methods , Tuberculosis/diagnostic imaging , Animals , Disease Models, Animal , Humans , Mice , Mycobacterium tuberculosis/isolation & purification , Tuberculosis/microbiology , Tuberculosis/pathology
5.
Sci Rep ; 10(1): 11694, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32678135

ABSTRACT

Neutrophils are pivotal players in immune defence which includes a process of release of histones and DNA as neutrophil extracellular traps (NETs). Histones, while toxic to invading pathogens, also kill host cells, including neutrophils. Bacteria have evolved mechanisms to escape neutrophils, including the secretion of leucocidins (e.g. ionomycin). Live cell video microscopy showed how fibrinogen and fibrin influence NETosis and neutrophil responses to extracellular histones. Histones were rapidly lethal to neutrophils after binding to cells, but formation of fibrinogen/fibrin-histone aggregates prevented cell death. Histone cytotoxicity was also reduced by citrullination by peptidyl arginine deiminase 4, or digestion by serine proteases. Ionomycin and phorbol 12-myristate 13 acetate (PMA) are used to trigger NETosis. Fibrinogen was responsible for a second distinct mechanism of neutrophil protection after treatment with ionomycin. Fibrinogen clustered on the surface of ionomycin-stimulated neutrophils to delay NETosis; and blocking the ß integrin receptor, αMß2, abolished fibrinogen protection. Fibrinogen did not bind to or protect neutrophils stimulated with PMA. Fibrinogen is an acute phase protein that will protect exposed cells from damaging circulating histones or leucocidins; but fibrinogen depletion/consumption, as in trauma or sepsis will reduce protection. It is necessary to consider the role of fibrinogen in NETosis.


Subject(s)
Extracellular Traps/drug effects , Fibrin Fibrinogen Degradation Products/pharmacology , Histones/pharmacology , Ionomycin/pharmacology , Neutrophils/drug effects , Neutrophils/metabolism , Protective Agents/pharmacology , Blood Donors , Cell Death/drug effects , Cells, Cultured , Citrullination , DNA/metabolism , Extracellular Traps/metabolism , Fibrin Fibrinogen Degradation Products/metabolism , Histones/metabolism , Humans , Macrophage-1 Antigen/metabolism , Protein Aggregates , Tetradecanoylphorbol Acetate/pharmacology
6.
Mol Ther Methods Clin Dev ; 16: 161-171, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32055644

ABSTRACT

Recent clinical trials are evaluating induced pluripotent stem cells (iPSCs) as a cellular therapy in the field of regenerative medicine. The widespread clinical utility of iPSCs is expected to be realized using allogeneic cells that have undergone thorough safety evaluations, including assessment of their immunogenicity. IPSC-derived neural crest stem cells (NCSCs) have significant potential in regenerative medicine; however, their application in cellular therapy has not been widely studied to date, and no reports on their potential immunogenicity have been published so far. In this study, we have assessed the expression of immune-related antigens in iPSC-NCSCs, including human leukocyte antigen (HLA) class I and II and co-stimulatory molecules. To investigate functional immunogenicity, we used iPSC-NCSCs as stimulator cells in a one-way mixed lymphocyte reaction. In these experiments, iPSC-NCSCs did not stimulate detectable proliferation of CD3+ and CD3+CD8+ T cells or induce cytokine production. We show that this was not a result of any immunosuppressive features of iPSC-NCSCs, but rather more consistent with their non-immunogenic molecular phenotype. These results are encouraging for the potential future use of iPSC-NCSCs as a cellular therapy.

7.
Vaccine ; 38(13): 2859-2869, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32089463

ABSTRACT

To examine the link between meningococcal C (MenC) vaccine size and immunogenic response, a panel of MenC glycoconjugate vaccines were prepared differing in chain length, molar mass and hydrodynamic volume. The preparations consisted of different lengths of MenC polysaccharide (PS) covalently linked to monomeric purified tetanus toxoid (TT) carrier protein using the coupling reagent ethylcarbodiimide hydrochloride (EDC). Size exclusion chromatography with multi-angle light scattering (SEC-MALS) and viscometry analysis confirmed that the panel of MenC-TT conjugates spanned masses of 191,500 to 2,348,000 g/mol, and hydrodynamic radii ranging from 12.1 to 47.9 nm. The two largest conjugates were elliptical in shape, whereas the two smallest conjugates were more spherical. The larger conjugates appeared to fit a model described by multiple TTs with cross-linked PS, typical of lattice-like networks described previously for TT conjugates, while the smaller conjugates were found to fit a monomeric or dimeric TT configuration. The effect of vaccine conjugate size on immune responses was determined using a two-dose murine immunization. The two larger panel vaccine conjugates produced higher anti-MenC IgG1 and IgG2b titres after the second dose. Larger vaccine conjugate size also stimulated greater T-cell proliferative responses in an in vitro recall assay, although cytokines indicative of a T-helper response were not measurable. In conclusion, larger MenC-TT conjugates up to 2,348,000 g/mol produced by EDC chemistry correlate with greater humoral and cellular murine immune responses. These observations suggest that conjugate size can be an important modulator of immune response.


Subject(s)
Carbodiimides , Immunogenicity, Vaccine , Meningococcal Vaccines/immunology , Neisseria meningitidis, Serogroup C , Tetanus Toxoid/immunology , Animals , Antibodies, Bacterial , Immunoconjugates/immunology , Mice , Neisseria meningitidis, Serogroup C/immunology , Polysaccharides, Bacterial/immunology , Vaccines, Combined , Vaccines, Conjugate
8.
Opt Express ; 21(18): 21508-22, 2013 Sep 09.
Article in English | MEDLINE | ID: mdl-24104026

ABSTRACT

We demonstrate selection of reliable approaches for post-production characterization of oblique incidence multilayer optical coatings. The approaches include choice of input information, selection of adequate coating model, corresponding numerical characterization algorithm, and verification of the results. Applications of the approaches are illustrated with post-production characterization of oblique incidence edge filter, oblique incidence beam splitter and oblique incidence 43-layer quarter-wave mirror.

9.
J Cell Sci ; 126(Pt 20): 4627-35, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23943875

ABSTRACT

Following adherence of neutrophils to the endothelium, neutrophils undergo a major morphological change that is a necessary prelude to their extravasation. We show here that this shape change is triggered by an elevation of cytosolic inositol (1,4,5)-trisphosphate (IP3), to provoke physiological Ca(2+) influx through a store-operated mechanism. This transition from a spherical to 'flattened' neutrophil morphology is rapid (∼100 seconds) and is accompanied by an apparent rapid expansion of the area of the plasma membrane. However, no new membrane is added into the plasma membrane. Pharmacological inhibition of calpain-activation, which is triggered by Ca(2+) influx during neutrophil spreading, prevents normal cell flattening. In calpain-suppressed cells, an aberrant form of cell spreading can occur where an uncoordinated and localised expansion of the plasma membrane is evident. These data show that rapid neutrophil spreading is triggered by Ca(2+) influx, which causes activation of calpain and release of furled plasma membrane to allow its apparent 'expansion'.


Subject(s)
Calcium/metabolism , Calpain/metabolism , Neutrophils/cytology , Neutrophils/metabolism , Actins/metabolism , Cell Membrane/enzymology , Cell Membrane/metabolism , Cell Shape/physiology , Humans , Inositol 1,4,5-Trisphosphate/metabolism , Microscopy, Confocal , Neutrophils/enzymology , Phagocytosis
10.
Appl Opt ; 51(2): 245-54, 2012 Jan 10.
Article in English | MEDLINE | ID: mdl-22270522

ABSTRACT

We perform characterization of thin films and reverse engineering of multilayer coatings on the basis of multiangle spectral photometric data provided by a new advanced spectrophotometer accessory. Experimental samples of single thin films and multilayer coatings are produced by magnetron sputtering and electron-beam evaporation. Reflectance and transmittance data at two polarization states are measured at incidence angles from 7 to 40 deg. We demonstrate that multiangle reflectance and transmittance data provide reliable characterization and reverse-engineering results.

SELECTION OF CITATIONS
SEARCH DETAIL
...