Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Evol ; 81(5-6): 150-61, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26530075

ABSTRACT

Nucleic acid aptamers are novel molecular recognition tools that offer many advantages compared to their antibody and peptide-based counterparts. However, challenges associated with in vitro selection, characterization, and validation have limited their wide-spread use in the fields of diagnostics and therapeutics. Here, we extracted detailed information about aptamer selection experiments housed in the Aptamer Base, spanning over two decades, to perform the first parameter analysis of conditions used to identify and isolate aptamers de novo. We used information from 492 published SELEX experiments and studied the relationships between the nucleic acid library, target choice, selection methods, experimental conditions, and the affinity of the resulting aptamer candidates. Our findings highlight that the choice of target and selection template made the largest and most significant impact on the success of a de novo aptamer selection. Our results further emphasize the need for improved documentation and more thorough experimentation of SELEX criteria to determine their correlation with SELEX success.


Subject(s)
Aptamers, Nucleotide , SELEX Aptamer Technique/methods
2.
Database (Oxford) ; 2012: bas006, 2012.
Article in English | MEDLINE | ID: mdl-22434840

ABSTRACT

Over the past several decades, rapid developments in both molecular and information technology have collectively increased our ability to understand molecular recognition. One emerging area of interest in molecular recognition research includes the isolation of aptamers. Aptamers are single-stranded nucleic acid or amino acid polymers that recognize and bind to targets with high affinity and selectivity. While research has focused on collecting aptamers and their interactions, most of the information regarding experimental methods remains in the unstructured and textual format of peer reviewed publications. To address this, we present the Aptamer Base, a database that provides detailed, structured information about the experimental conditions under which aptamers were selected and their binding affinity quantified. The open collaborative nature of the Aptamer Base provides the community with a unique resource that can be updated and curated in a decentralized manner, thereby accommodating the ever evolving field of aptamer research. DATABASE URL: http://aptamer.freebase.com.


Subject(s)
Database Management Systems , Databases, Factual , SELEX Aptamer Technique , Aptamers, Nucleotide , Aptamers, Peptide , Research Design
3.
Anal Chem ; 83(18): 7027-34, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21815621

ABSTRACT

Surface plasmon resonance (SPR) biosensors prepared using optical fibers can be used as a cost-effective and relatively simple-to-implement alternative to well established biosensor platforms for monitoring biomolecular interactions in situ or possibly in vivo. The fiber biosensor presented in this study utilizes an in-fiber tilted Bragg grating to excite the SPR on the surface of the sensor over a large range of external medium refractive indices, with minimal cross-sensitivity to temperature and without compromising the structural integrity of the fiber. The label-free biorecognition scheme used demonstrates that the sensor relies on the functionalization of the gold-coated fiber with aptamers, synthetic DNA sequences that bind with high specificity to a given target. In addition to monitoring the functionalization of the fiber by the aptamers in real-time, the results also show how the fiber biosensor can detect the presence of the aptamer's target, in various concentrations of thrombin in buffer and serum solutions. The findings also show how the SPR biosensor can be used to evaluate the dissociation constant (K(d)), as the binding constant agrees with values already reported in the literature.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Surface Plasmon Resonance/methods , DNA/chemistry , Gold/chemistry , Humans , Thrombin/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...