Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Phys Med Biol ; 69(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38964312

ABSTRACT

Objective.To present a new set of lithium-ion cross-sections for (i) ionization and excitation processes down to 700 eV, and (ii) charge-exchange processes down to 1 keV u-1. To evaluate the impact of the use of these cross-sections on micro a nano dosimetric quantities in the context of boron neutron capture (BNC) applications/techniques.Approach.The Classical Trajectory Monte Carlo method was used to calculate Li ion charge-exchange cross sections in the energy range of 1 keV u-1to 10 MeV u-1. Partial Li ion charge states ionization and excitation cross-sections were calculated using a detailed charge screening factor. The cross-sections were implemented in Geant4-DNA v10.07 and simulations and verified using TOPAS-nBio by calculating stopping power and continuous slowing down approximation (CSDA) range against data from ICRU and SRIM. Further microdosimetric and nanodosimetric calculations were performed to quantify differences against other simulation approaches for low energy Li ions. These calculations were: lineal energy spectra (yf(y) andyd(y)), frequency mean lineal energyyF-, dose mean lineal energyyD-and ionization cluster size distribution analysis. Microdosimetric calculations were compared against a previous MC study that neglected charge-exchange and excitation processes. Nanodosimetric results were compared against pure ionization scaled cross-sections calculations.Main results.Calculated stopping power differences between ICRU and Geant4-DNA decreased from 33.78% to 6.9%. The CSDA range difference decreased from 621% to 34% when compared against SRIM calculations. Geant4-DNA/TOPAS calculated dose mean lineal energy differed by 128% from the previous Monte Carlo. Ionization cluster size frequency distributions for Li ions differed by 76%-344.11% for 21 keV and 2 MeV respectively. With a decrease in theN1within 9% at 10 keV and agreeing after the 100 keV. With the new set of cross-sections being able to better simulate low energy behaviors of Li ions.Significance.This work shows an increase in detail gained from the use of a more complete set of low energy cross-sections which include charge exchange processes. Significant differences to previous simulation results were found at the microdosimetric and nanodosimetric scales that suggest that Li ions cause less ionizations per path length traveled but with more energy deposits. Microdosimetry results suggest that the BNC's contribution to cellular death may be mainly due to alpha particle production when boron-based drugs are distributed in the cellular membrane and beyond and by Li when it is at the cell cytoplasm regions.


Subject(s)
Boron Neutron Capture Therapy , Lithium , Monte Carlo Method , Radiometry , Lithium/chemistry , Boron Neutron Capture Therapy/methods , Nanotechnology , Elasticity
2.
Environ Res ; 235: 116639, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37453510

ABSTRACT

Livestock wastewater can contain high levels of phosphates and trace amounts of various ionic species harming the environment and human health. These ions can be successfully removed from livestock effluent and recovered in a non-toxic crystal form via crystallization. The fluidized bed homogeneous crystallization (FBHC) technology is a cutting-edge pretreatment method that removes phosphate and ammonium by crystallizing struvite. The findings demonstrated a 37% removal for ammonium solutions alone, 38% with copper, 35% with zinc, and 33% when copper and zinc were present, while the crystallization efficiency was achieved at 35%, 33% with copper, 28% with zinc, and 26% with copper and zinc. For phosphate-containing solutions, 95% was removed, 81% with copper, 96% with zinc, and 88% with copper and zinc. Similarly, crystallization efficiency was attained at 87%, 60% with copper, 94% with zinc, and 81% when copper and zinc were combined with phosphates. For ammonium solutions, copper and zinc reduced the removal and crystallization efficiency at constant pH and increased at increasing pH. For phosphate solutions, the removal and crystallization efficiencies increased at increasing pH. However, zinc ions resulted in the highest removal, and crystallization efficiency for phosphate solutions was attained. Based on SEM, EDS, XRD, and XPS analyses, the peaks revealed the presence of struvite in the form of magnesium ammonium phosphate.


Subject(s)
Ammonium Compounds , Wastewater , Animals , Humans , Struvite , Sewage , Livestock , Magnesium Compounds/chemistry , Crystallization , Copper , Phosphates/chemistry , Digestion , Phosphorus , Waste Disposal, Fluid/methods
3.
BioTech (Basel) ; 10(4)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-35822802

ABSTRACT

The societal acceptability of different applications of genomic technologies to animal production systems will determine whether their innovation trajectories will reach the commercialisation stage. Importantly, technological implementation and commercialisation trajectories, regulation, and policy development need to take account of public priorities and attitudes. More effective co-production practices will ensure the application of genomic technologies to animals aligns with public priorities and are acceptable to society. Consumer rejection of, and limited demand for, animal products developed using novel genomic technologies will determine whether they are integration into the food system. However, little is known about whether genomic technologies that accelerate breeding but do not introduce cross-species genetic changes are more acceptable to consumers than those that do. Five focus groups, held in the north east of England, were used to explore the perceptions of, and attitudes towards, the use of genomic technologies in breeding farm animals for the human food supply chain. Overall, study participants were more positive towards genomic technologies applied to promote animal welfare (e.g., improved disease resistance), environmental sustainability, and human health. Animal "disenhancement" was viewed negatively and increased food production alone was not perceived as a potential benefit. In comparison to gene editing, research participants were most negative about genetic modification and the application of gene drives, independent of the benefits delivered.

4.
Chemosphere ; 239: 124662, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31499305

ABSTRACT

Fluorine is the most reactive elements among the halogen group and commonly and ubiquitously occurs as fluoride in nature. The industrial processes produce fluoride by-products causing the increase of unwanted environmental levels and consequently posing risk on human and environmental health worldwide. This review gives a fundamental understanding of fluoride networks in the industrial processes, in the geological and hydrological transport, and in the biological sphere. Numerous biological pathways of fluoride also increase the risk of exposure. Literature shows that various environmental levels of fluoride due to its chemical characteristics cause bioaccumulation resulting in health deterioration among organisms. These problems are aggravated by emitted fluoride in the air and wastewater streams. Moreover, the current waste disposal dependent on incineration and landfilling superpose to the problem. In our analysis, the fluoride material flow model still follows a linear economy and reuse economy to some extent. This flow model spoils resources with high economic potential and worsens environmental problems. Thus, we intend a shift from the conventional linear economy to a circular economy with the revival of three-dimensional objectives of sustainable development. Linkages between key dimensions of the circular economy to stimulate momentum for perpetual sustainable development are proposed to gain economic, environmental and social benefits.


Subject(s)
Air Pollutants/analysis , Fluorides/analysis , Refuse Disposal/methods , Sustainable Development/economics , Water Pollutants, Chemical/analysis , Fluorides/toxicity , Incineration , Wastewater/chemistry
5.
Phys Med ; 67: 148-154, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31707141

ABSTRACT

This paper presents a Monte-Carlo study focusing on the effects of gold nanoparticles on the energy deposition patterns produced by incident photons in the close vicinity of the mitochondrial network modeled as a tube. Spherical shaped gold nanoparticles of 30 nm diameter were placed in a micrometric (10 × 10 × 10 µm3) water phantom containing a tube of 300 nm diameter and 5 µm length. The tube represented a mitochondrial fragment and nanoparticles were distributed in the water phantom outside the tube. Photons of 120 keV were simulated using the Geant4 Livermore processes and the Geant4-DNA electron processes to account for secondary electrons collisions. The Livermore processes took into account the Auger cascade inside the gold material. A data mining algorithm was then used to analyze the energy deposition clusters inside the water phantom and the tube. A comparison was made between the results obtained for a uniform distribution of nanoparticles and a vesicle distribution model. The results including energy deposition clusters are also compared to dose enhancement ratios.


Subject(s)
Gold/chemistry , Gold/pharmacology , Metal Nanoparticles , Mitochondria/drug effects , Models, Biological , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/pharmacology , Dose-Response Relationship, Drug , Mitochondria/radiation effects , Phantoms, Imaging
6.
Radiat Res ; 191(1): 76-92, 2019 01.
Article in English | MEDLINE | ID: mdl-30407901

ABSTRACT

Our understanding of radiation-induced cellular damage has greatly improved over the past few decades. Despite this progress, there are still many obstacles to fully understand how radiation interacts with biologically relevant cellular components, such as DNA, to cause observable end points such as cell killing. Damage in DNA is identified as a major route of cell killing. One hurdle when modeling biological effects is the difficulty in directly comparing results generated by members of different research groups. Multiple Monte Carlo codes have been developed to simulate damage induction at the DNA scale, while at the same time various groups have developed models that describe DNA repair processes with varying levels of detail. These repair models are intrinsically linked to the damage model employed in their development, making it difficult to disentangle systematic effects in either part of the modeling chain. These modeling chains typically consist of track-structure Monte Carlo simulations of the physical interactions creating direct damages to DNA, followed by simulations of the production and initial reactions of chemical species causing so-called "indirect" damages. After the induction of DNA damage, DNA repair models combine the simulated damage patterns with biological models to determine the biological consequences of the damage. To date, the effect of the environment, such as molecular oxygen (normoxic vs. hypoxic), has been poorly considered. We propose a new standard DNA damage (SDD) data format to unify the interface between the simulation of damage induction in DNA and the biological modeling of DNA repair processes, and introduce the effect of the environment (molecular oxygen or other compounds) as a flexible parameter. Such a standard greatly facilitates inter-model comparisons, providing an ideal environment to tease out model assumptions and identify persistent, underlying mechanisms. Through inter-model comparisons, this unified standard has the potential to greatly advance our understanding of the underlying mechanisms of radiation-induced DNA damage and the resulting observable biological effects when radiation parameters and/or environmental conditions change.


Subject(s)
DNA Damage , Computer Simulation , DNA Repair , Linear Energy Transfer , Models, Theoretical , Monte Carlo Method
7.
Med Phys ; 2018 Jun 14.
Article in English | MEDLINE | ID: mdl-29901835

ABSTRACT

This Special Report presents a description of Geant4-DNA user applications dedicated to the simulation of track structures (TS) in liquid water and associated physical quantities (e.g., range, stopping power, mean free path…). These example applications are included in the Geant4 Monte Carlo toolkit and are available in open access. Each application is described and comparisons to recent international recommendations are shown (e.g., ICRU, MIRD), when available. The influence of physics models available in Geant4-DNA for the simulation of electron interactions in liquid water is discussed. Thanks to these applications, the authors show that the most recent sets of physics models available in Geant4-DNA (the so-called "option4" and "option 6" sets) enable more accurate simulation of stopping powers, dose point kernels, and W-values in liquid water, than the default set of models ("option 2") initially provided in Geant4-DNA. They also serve as reference applications for Geant4-DNA users interested in TS simulations.

8.
Phys Med ; 42: 7-12, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29173923

ABSTRACT

Mitochondria are considered to be sensitive radiation targets since they control processes vital to the cell's functioning. These organelles are starting to get attention and some studies are investigating the radiation dose inside them. In previous studies, mitochondria are represented as simple ellipsoids inside the cell not taking into consideration the complexity of their shape. In this study, realistic phantoms are built based on deconvolved widefield fluorescent microscopic images of the mitochondrial networks of fibroblast cells. The phantoms are imported into Geant4 as tessellated volumes taking into account the geometrical complexity of these organelles. Irradiation with 250keV photons is performed and the lineal energy is calculated. The lineal energy distributions inside the produced phantoms are compared with those calculated inside simple volumes, a sphere and an ellipsoid, where the effect of the shape and volume is clearly seen on lineal energies.


Subject(s)
Imaging, Three-Dimensional , Mitochondria/radiation effects , Mitochondria/ultrastructure , Phantoms, Imaging , Photons , Radiometry/instrumentation , Radiometry/methods , Algorithms , Biomechanical Phenomena , Cells, Cultured , Computer Simulation , Fibroblasts/cytology , Fibroblasts/pathology , Fibroblasts/radiation effects , Humans , Imaging, Three-Dimensional/methods , Mitochondrial Diseases/pathology , Mitochondrial Diseases/radiotherapy , Monte Carlo Method
9.
Phys Med ; 31(8): 861-874, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26653251

ABSTRACT

Understanding the fundamental mechanisms involved in the induction of biological damage by ionizing radiation remains a major challenge of today's radiobiology research. The Monte Carlo simulation of physical, physicochemical and chemical processes involved may provide a powerful tool for the simulation of early damage induction. The Geant4-DNA extension of the general purpose Monte Carlo Geant4 simulation toolkit aims to provide the scientific community with an open source access platform for the mechanistic simulation of such early damage. This paper presents the most recent review of the Geant4-DNA extension, as available to Geant4 users since June 2015 (release 10.2 Beta). In particular, the review includes the description of new physical models for the description of electron elastic and inelastic interactions in liquid water, as well as new examples dedicated to the simulation of physicochemical and chemical stages of water radiolysis. Several implementations of geometrical models of biological targets are presented as well, and the list of Geant4-DNA examples is described.


Subject(s)
DNA/chemistry , Models, Molecular , Monte Carlo Method , Water/chemistry , Chemical Phenomena , Humans
10.
Med Phys ; 42(7): 3870-6, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26133588

ABSTRACT

PURPOSE: The geant4-DNA physics models are upgraded by a more accurate set of electron cross sections for ionization and excitation in liquid water. The impact of the new developments on low-energy electron transport simulations by the geant4 Monte Carlo toolkit is examined for improving its performance in dosimetry applications at the subcellular and nanometer level. METHODS: The authors provide an algorithm for an improved implementation of the Emfietzoglou model dielectric response function of liquid water used in the geant4-DNA existing model. The algorithm redistributes the imaginary part of the dielectric function to ensure a physically motivated behavior at the binding energies, while retaining all the advantages of the original formulation, e.g., the analytic properties and the fulfillment of the f-sum-rule. In addition, refinements in the exchange and perturbation corrections to the Born approximation used in the geant4-DNA existing model are also made. RESULTS: The new ionization and excitation cross sections are significantly different from those of the geant4-DNA existing model. In particular, excitations are strongly enhanced relative to ionizations, resulting in higher W-values and less diffusive dose-point-kernels at sub-keV electron energies. CONCLUSIONS: An improved energy-loss model for the excitation and ionization of liquid water by low-energy electrons has been implemented in geant4-DNA. The suspiciously low W-values and the unphysical long tail in the dose-point-kernel have been corrected owing to a different partitioning of the dielectric function.


Subject(s)
Algorithms , Electron Transport , Models, Chemical , Water/chemistry , Computer Simulation , Electrons , Ions/chemistry , Monte Carlo Method
11.
Comput Math Methods Med ; 2015: 417501, 2015.
Article in English | MEDLINE | ID: mdl-26124855

ABSTRACT

PURPOSE: To study the influence of DNA configuration on the direct damage yield. No indirect effect has been accounted for. METHODS: The GEANT4-DNA code was used to simulate the interactions of protons and alpha particles with geometrical models of the A-, B-, and Z-DNA configurations. The direct total, single, and double strand break yields and site-hit probabilities were determined. Certain features of the energy deposition process were also studied. RESULTS: A slight increase of the site-hit probability as a function of the incident particle linear energy transfer was found for each DNA configuration. Each DNA form presents a well-defined site-hit probability, independently of the particle linear energy transfer. Approximately 70% of the inelastic collisions and ~60% of the absorbed dose are due to secondary electrons. These fractions are slightly higher for protons than for alpha particles at the same incident energy. CONCLUSIONS: The total direct strand break yield for a given DNA form depends weakly on DNA conformation topology. This yield is practically determined by the target volume of the DNA configuration. However, the double strand break yield increases with the packing ratio of the DNA double helix; thus, it depends on the DNA conformation.


Subject(s)
DNA Breaks, Double-Stranded/radiation effects , DNA, A-Form/chemistry , DNA, B-Form/chemistry , DNA, Z-Form/chemistry , Algorithms , Computational Biology , Computer Simulation , DNA, A-Form/radiation effects , DNA, B-Form/radiation effects , DNA, Z-Form/radiation effects , Humans , Linear Energy Transfer , Models, Theoretical , Nucleic Acid Conformation , Probability , Software
12.
Phys Med Biol ; 59(24): 7691-702, 2014 Dec 21.
Article in English | MEDLINE | ID: mdl-25415376

ABSTRACT

In this study, fragmentation yields of carbon therapy beams are estimated using the Geant4 simulation toolkit version 9.5. Simulations are carried out in a step-by-step mode using the Geant4-DNA processes for each of the major contributing fragments. The energy of the initial beam is taken 400 MeV amu(-1) as this is the highest energy, which is used for medical accelerators and this would show the integral role of secondary contributions in radiotherapy irradiations. The obtained results showed that 64% of the global dose deposition is initiated by carbon ions, while up to 36% is initiated by the produced fragments including all their isotopes. The energy deposition clustering yields of each of the simulated fragments are then estimated using the DBSCAN clustering algorithm and they are compared to the yields of the incident primary beam.


Subject(s)
Carbon/therapeutic use , Heavy Ion Radiotherapy , Nanotechnology/methods , Phantoms, Imaging , Algorithms , Computer Simulation , Humans , Linear Energy Transfer , Radiation Dosage , Radiometry/methods , Relative Biological Effectiveness
13.
Appl Radiat Isot ; 83 Pt B: 137-41, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23478094

ABSTRACT

Modeling the radio-induced effects in biological medium still requires accurate physics models to describe the interactions induced by all the charged particles present in the irradiated medium in detail. These interactions include inelastic as well as elastic processes. To check the accuracy of the very low energy models recently implemented into the GEANT4 toolkit for modeling the electron slowing-down in liquid water, the simulation of electron dose point kernels remains the preferential test. In this context, we here report normalized radial dose profiles, for mono-energetic point sources, computed in liquid water by using the very low energy "GEANT4-DNA" physics processes available in the GEANT4 toolkit. In the present study, we report an extensive intra-comparison of profiles obtained by a large selection of existing and well-documented Monte-Carlo codes, namely, EGSnrc, PENELOPE, CPA100, FLUKA and MCNPX.

14.
Phys Med Biol ; 57(1): 209-24, 2012 Jan 07.
Article in English | MEDLINE | ID: mdl-22156022

ABSTRACT

This work presents a Monte Carlo study of energy depositions due to protons, alpha particles and carbon ions of the same linear-energy-transfer (LET) in liquid water. The corresponding track structures were generated using the Geant4-DNA toolkit, and the energy deposition spatial distributions were analyzed using an adapted version of the DBSCAN clustering algorithm. Combining the Geant4 simulations and the clustering algorithm it was possible to compare the quality of the different radiation types. The ratios of clustered and single energy depositions are shown versus particle LET and frequency-mean lineal energies. The estimated effect of these types of radiation on biological tissues is then discussed by comparing the results obtained for different particles with the same LET.


Subject(s)
Linear Energy Transfer , Monte Carlo Method , Water/chemistry , Algorithms , Alpha Particles , Carbon , Protons
15.
Appl Radiat Isot ; 69(1): 220-6, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20810287

ABSTRACT

This paper presents a study of energy deposits induced by ionising particles in liquid water at the molecular scale. Particles track structures were generated using the Geant4-DNA processes of the Geant4 Monte-Carlo toolkit. These processes cover electrons (0.025 eV-1 MeV), protons (1 keV-100 MeV), hydrogen atoms (1 keV-100 MeV) and alpha particles (10 keV-40 MeV) including their different charge states. Electron ranges and lineal energies for protons were calculated in nanometric and micrometric volumes.


Subject(s)
Models, Biological , Monte Carlo Method , Radiometry/methods , Computer Simulation , DNA/chemistry , Electrons , Protons , Water/chemistry
16.
Radiat Prot Dosimetry ; 143(2-4): 214-8, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21186212

ABSTRACT

The ROSIRIS project aims to study the radiobiology of integrated systems for medical treatment optimisation using ionising radiations and evaluate the associated risk. In the framework of this project, one research focus is the interpretation of the initial radio-induced damage in DNA created by ionising radiation (and detected by γ-H2AX foci analysis) from the track structure of the incident particles. In order to calculate the track structure of ionising particles at a nanometric level, the Geant4 Monte Carlo toolkit was used. Geant4 (Object Oriented Programming Architecture in C++) offers a common platform, available free to all users and relatively easy to use. Nevertheless, the current low-energy threshold for electromagnetic processes in GEANT4 is set to 1 keV (250 eV using the Livermore processes), which is an unsuitable value for nanometric applications. To lower this energy threshold, the necessary interaction processes and models were identified, and the corresponding available cross sections collected from the literature. They are mostly based on the plane-wave Born approximation (first Born approximation, or FBA) for inelastic interactions and on semi-empirical models for energies where the FBA fails (at low energies). In this paper, the extensions that have been introduced into the 9.3 release of the Geant4 toolkit are described, the so-called Geant4-DNA extension, including a set of processes and models adapted in this study and permitting the simulation of electron (8 eV-1 MeV), proton (100 eV-100 MeV) and alpha particle (1 keV-10 MeV) interactions in liquid water.


Subject(s)
Algorithms , DNA Damage/physiology , DNA/chemistry , DNA/radiation effects , Models, Chemical , Monte Carlo Method , Software , Computer Simulation , DNA/genetics , Dose-Response Relationship, Radiation , Models, Genetic , Models, Statistical , Radiation Dosage , Software Validation
17.
Med Phys ; 37(9): 4692-708, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20964188

ABSTRACT

PURPOSE: The GEANT4 general-purpose Monte Carlo simulation toolkit is able to simulate physical interaction processes of electrons, hydrogen and helium atoms with charge states (H0, H+) and (He0, He+, He2+), respectively, in liquid water, the main component of biological systems, down to the electron volt regime and the submicrometer scale, providing GEANT4 users with the so-called "GEANT4-DNA" physics models suitable for microdosimetry simulation applications. The corresponding software has been recently re-engineered in order to provide GEANT4 users with a coherent and unique approach to the simulation of electromagnetic interactions within the GEANT4 toolkit framework (since GEANT4 version 9.3 beta). This work presents a quantitative comparison of these physics models with a collection of experimental data in water collected from the literature. METHODS: An evaluation of the closeness between the total and differential cross section models available in the GEANT4 toolkit for microdosimetry and experimental reference data is performed using a dedicated statistical toolkit that includes the Kolmogorov-Smirnov statistical test. The authors used experimental data acquired in water vapor as direct measurements in the liquid phase are not yet available in the literature. Comparisons with several recommendations are also presented. RESULTS: The authors have assessed the compatibility of experimental data with GEANT4 microdosimetry models by means of quantitative methods. The results show that microdosimetric measurements in liquid water are necessary to assess quantitatively the validity of the software implementation for the liquid water phase. Nevertheless, a comparison with existing experimental data in water vapor provides a qualitative appreciation of the plausibility of the simulation models. The existing reference data themselves should undergo a critical interpretation and selection, as some of the series exhibit significant deviations from each other. CONCLUSIONS: The GEANT4-DNA physics models available in the GEANT4 toolkit have been compared in this article to available experimental data in the water vapor phase as well as to several published recommendations on the mass stopping power. These models represent a first step in the extension of the GEANT4 Monte Carlo toolkit to the simulation of biological effects of ionizing radiation.


Subject(s)
Models, Theoretical , Water , DNA Damage , Elasticity , Electrons , Helium , Monte Carlo Method , Protons , Radiometry , Scattering, Radiation , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...