Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phytopathology ; 109(2): 257-264, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30457432

ABSTRACT

In Brazil, the host expansion of Xylella fastidiosa subsp. pauca was recently demonstrated with the report of diseased olive trees (Olea europaea), whose symptoms were associated with olive quick decline syndrome previously described in southern Italy. We employed both polymerase chain reaction-based techniques and culture medium isolation to investigate the geographic distribution of X. fastidiosa as well as the genetic signatures of 21 strains isolated from 11 olive orchards in both São Paulo and Minas Gerais States in Brazil. X. fastidiosa subsp. pauca was detected in 83% of the orchards examined in the region, and was positively diagnosed in 43.7% of all sampled plants with typical scorching symptoms. Of the 21 strains characterized with fast-evolving microsatellite (single sequence repeat [SSR]) markers, 20 different multilocus microsatellite genotypes were observed with the overall allelic diversity of HNei = 0.38. Principal component analysis using the SSR markers clustered all strains, except for three, in one cluster demonstrating a limited range of genetic diversity. Multilocus sequence typing analysis showed the prevalence of a sequence type (ST16) in 75% of the samples; three other novel STs (84, 85, and 86), were detected, all belonging to the X. fastidiosa subsp. pauca cluster. These results show that genetically diverse strains of X. fastidiosa subsp. pauca are widely present in olive orchards in southeastern Brazil, which is consistent with the long history of this bacterium in that region.


Subject(s)
Olea , Plant Diseases/microbiology , Xylella , Brazil , Genetic Variation , Genotype
2.
Mol Plant Microbe Interact ; 30(3): 231-244, 2017 03.
Article in English | MEDLINE | ID: mdl-28121239

ABSTRACT

Zymoseptoria tritici is an ascomycete fungus that causes Septoria tritici blotch, a globally distributed foliar disease on wheat. Z. tritici populations are highly polymorphic and exhibit significant quantitative variation for virulence. Despite its importance, the genes responsible for quantitative virulence in this pathogen remain largely unknown. We investigated the expression profiles of four Z. tritici strains differing in virulence in an experiment conducted under uniform environmental conditions. Transcriptomes were compared at four different infection stages to characterize the regulation of gene families thought to be involved in virulence and to identify new virulence factors. The major components of the fungal infection transcriptome showed consistent expression profiles across strains. However, strain-specific regulation was observed for many genes, including some encoding putative virulence factors. We postulate that strain-specific regulation of virulence factors can determine the outcome of Z. tritici infections. We show that differences in gene expression may be major determinants of virulence variation among Z. tritici strains, adding to the already known contributions to virulence variation based on differences in gene sequence and gene presence/absence polymorphisms.


Subject(s)
Ascomycota/genetics , Gene Expression Profiling , Gene Expression Regulation, Fungal , Plant Diseases/genetics , Plant Diseases/microbiology , Triticum/microbiology , Disease Progression , Fungal Proteins/genetics , Fungal Proteins/metabolism , Genes, Fungal , Transcription, Genetic , Transcriptome/genetics , Virulence/genetics , Virulence Factors/genetics , Virulence Factors/metabolism
3.
Phytopathology ; 107(4): 395-402, 2017 04.
Article in English | MEDLINE | ID: mdl-27992307

ABSTRACT

Xylella fastidiosa, an economically important plant-pathogenic bacterium, infects both coffee and citrus trees in Brazil. Although X. fastidiosa in citrus is well studied, knowledge about the population structure of this bacterium infecting coffee remains unknown. Here, we studied the population structure of X. fastidiosa infecting coffee trees in São Paulo State, Brazil, in four regions where citrus is also widely cultivated. Genotyping of over 500 isolates from coffee plants using 14 genomic microsatellite markers indicated that populations were largely geographically isolated, as previously found with populations of X. fastidiosa infecting citrus. These results were supported by a clustering analysis, which indicated three major genetic groups among the four sampled regions. Overall, approximately 38% of isolates showed significant membership coefficients not related to their original geographical populations (i.e., migrants), characterizing a significant degree of genotype flow among populations. To determine whether admixture occurred between isolates infecting citrus and coffee plants, one site with citrus and coffee orchards adjacent to each other was selected; over 100 isolates were typed from each host plant. No signal of natural admixture between citrus- and coffee-infecting isolates was found; artificial cross-infection assays with representative isolates also yielded no successful cross infection. A comparison determined that X. fastidiosa populations from coffee have higher genetic diversity and allelic richness compared with citrus. The results showed that coffee and citrus X. fastidiosa populations are effectively isolated from each other and, although coffee populations are spatially structured, migration has an important role in shaping diversity.


Subject(s)
Citrus/microbiology , Coffea/microbiology , Genetic Variation , Plant Diseases/microbiology , Xylella/genetics , Alleles , Brazil , Genomics , Genotype , Microsatellite Repeats/genetics , Spatial Analysis , Sympatry , Xylella/isolation & purification
4.
Phytopathology ; 107(3): 305-312, 2017 03.
Article in English | MEDLINE | ID: mdl-27827008

ABSTRACT

Homologous recombination affects the evolution of bacteria such as Xylella fastidiosa, a naturally competent plant pathogen that requires insect vectors for dispersal. This bacterial species is taxonomically divided into subspecies, with phylogenetic clusters within subspecies that are host specific. One subspecies, pauca, is primarily limited to South America, with the exception of recently reported strains in Europe and Costa Rica. Despite the economic importance of X. fastidiosa subsp. pauca in South America, little is known about its genetic diversity. Multilocus sequence typing (MLST) has previously identified six sequence types (ST) among plant samples collected in Brazil (both subsp. pauca and multiplex). Here, we report on a survey of X. fastidiosa genetic diversity (MLST based) performed in six regions in Brazil and two in Argentina, by sampling five different plant species. In addition to the six previously reported ST, seven new subsp. pauca and two new subsp. multiplex ST were identified. The presence of subsp. multiplex in South America is considered to be the consequence of a single introduction from its native range in North America more than 80 years ago. Different phylogenetic approaches clustered the South American ST into four groups, with strains infecting citrus (subsp. pauca); coffee and olive (subsp. pauca); coffee, hibiscus, and plum (subsp. pauca); and plum (subsp. multiplex). In areas where these different genetic clusters occurred sympatrically, we found evidence of homologous recombination in the form of bidirectional allelic exchange between subspp. pauca and multiplex. In fact, the only strain of subsp. pauca isolated from a plum host had an allele that originated from subsp. multiplex. These signatures of bidirectional homologous recombination between endemic and introduced ST indicate that gene flow occurs in short evolutionary time frames in X. fastidiosa, despite the ecological isolation (i.e., host plant species) of genotypes.


Subject(s)
Citrus/microbiology , Genetic Variation , Homologous Recombination , Plant Diseases/microbiology , Xylella/genetics , Alleles , Genotype , Geography , Multigene Family , Multilocus Sequence Typing , Phylogeny , Sequence Analysis, DNA , South America , Xylella/isolation & purification , Xylella/pathogenicity
5.
Phytopathology ; 104(2): 120-5, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24397266

ABSTRACT

The ecology of plant pathogens of perennial crops is affected by the long-lived nature of their immobile hosts. In addition, changes to the genetic structure of pathogen populations may affect disease epidemiology and management practices; examples include local adaptation of more fit genotypes or introduction of novel genotypes from geographically distant areas via human movement of infected plant material or insect vectors. We studied the genetic structure of Xylella fastidiosa populations causing disease in sweet orange plants in Brazil at multiple scales using fast-evolving molecular markers (simple-sequence DNA repeats). Results show that populations of X. fastidiosa were regionally isolated, and that isolation was maintained for populations analyzed a decade apart from each other. However, despite such geographic isolation, local populations present in year 2000 were largely replaced by novel genotypes in 2009 but not as a result of migration. At a smaller spatial scale (individual trees), results suggest that isolates within plants originated from a shared common ancestor. In summary, new insights on the ecology of this economically important plant pathogen were obtained by sampling populations at different spatial scales and two different time points.


Subject(s)
Citrus sinensis/microbiology , Genetic Variation , Genetics, Population , Insect Vectors/microbiology , Plant Diseases/microbiology , Xylella/genetics , Animals , Brazil , Cluster Analysis , Crops, Agricultural , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Ecology , Genetic Structures , Genotype , Geography , Microsatellite Repeats/genetics , Species Specificity
6.
BMC Genomics ; 14: 247, 2013 Apr 12.
Article in English | MEDLINE | ID: mdl-23586643

ABSTRACT

BACKGROUND: Citrus huanglongbing (HLB) disease is caused by endogenous, phloem-restricted, Gram negative, uncultured bacteria named Candidatus Liberibacter africanus (CaLaf), Ca. L. asiaticus (CaLas), and Ca. L. americanus (CaLam), depending on the continent where the bacteria were first detected. The Asian citrus psyllid vector, Diaphorina citri, transmits CaLas and CaLam and both Liberibacter species are present in Brazil. Several studies of the transcriptional response of citrus plants manifesting HLB symptoms have been reported, but only for CaLas infection. This study evaluated the transcriptional reprogramming of a susceptible genotype of sweet orange challenged with CaLam, using a customized 385K microarray containing approximately 32,000 unigene transcripts. We analyzed global changes in gene expression of CaLam-infected leaves of sweet orange during the symptomatic stage of infection and compared the results with previously published microarray studies that used CaLas-infected plants. Twenty candidate genes were selected to validate the expression profiles in symptomatic and asymptomatic PCR-positive leaves infected with CaLas or CaLam. RESULTS: The microarray analysis identified 633 differentially expressed genes during the symptomatic stage of CaLam infection. Among them, 418 (66%) were upregulated and 215 (34%) were down regulated. Five hundred and fourteen genes (81%) were orthologs of genes from Arabidopsis thaliana. Gene set enrichment analysis (GSEA) revealed that several of the transcripts encoded transporters associated with the endomembrane system, especially zinc transport. Among the most biologically relevant gene transcripts in GSEA were those related to signaling, metabolism and/or stimulus to hormones, genes responding to stress and pathogenesis, biosynthesis of secondary metabolites, oxidative stress and transcription factors belonging to different families. Real time PCR of 20 candidate genes validated the expression pattern of some genes in symptomatic and asymptomatic leaves infected with CaLam or CaLas. CONCLUSIONS: Many gene transcripts and biological processes are significantly altered upon CaLam infection. Some of them had been identified in response to CaLas infection, while others had not been previously reported. These data will be useful for selecting target genes for genetic engineering to control HLB.


Subject(s)
Citrus sinensis/metabolism , Plant Diseases/genetics , Rhizobiaceae/pathogenicity , Carbohydrate Metabolism/genetics , Citrus sinensis/genetics , Citrus sinensis/microbiology , Microarray Analysis , Oxidative Stress/genetics , Phloem/genetics , Phloem/metabolism , Plant Diseases/microbiology , Plant Leaves/genetics , Real-Time Polymerase Chain Reaction , Rhizobiaceae/genetics , Rhizobiaceae/physiology , Transcription Factors/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...