Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ChemMedChem ; 19(9): e202300667, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38326914

ABSTRACT

Nagana and Human African Trypanosomiasis (HAT), caused by (sub)species of Trypanosoma, are diseases that impede human and animal health, and economic growth in Africa. The few drugs available have drawbacks including suboptimal efficacy, adverse effects, drug resistance, and difficult routes of administration. New drugs are needed. A series of 20 novel quinolone compounds with affordable synthetic routes was made and evaluated in vitro against Trypanosoma brucei and HEK293 cells. Of the 20 compounds, 12 had sub-micromolar potencies against the parasite (EC50 values=0.051-0.57 µM), and most were non-toxic to HEK293 cells (CC50 values>5 µM). Two of the most potent compounds presented sub-micromolar activities against other trypanosome (sub)species (T. cruzi and T. b. rhodesiense). Although aqueous solubility is poor, both compounds possess good logD values (2-3), and either robust or poor microsomal stability profiles. These varying attributes will be addressed in future reports.


Subject(s)
Parasitic Sensitivity Tests , Quinolones , Trypanocidal Agents , Trypanosoma brucei brucei , Humans , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/chemical synthesis , HEK293 Cells , Trypanosoma brucei brucei/drug effects , Structure-Activity Relationship , Quinolones/chemistry , Quinolones/pharmacology , Quinolones/chemical synthesis , Molecular Structure , Hydrazines/chemistry , Hydrazines/pharmacology , Hydrazines/chemical synthesis , Trypanosoma cruzi/drug effects , Dose-Response Relationship, Drug
2.
ChemMedChem ; 19(8): e202300656, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38277231

ABSTRACT

Studies have shown that depending on the substitution pattern, microtubule (MT)-targeting 1,2,4-triazolo[1,5-a]pyrimidines (TPDs) can produce different cellular responses in mammalian cells that may be due to these compounds interacting with distinct binding sites within the MT structure. Selected TPDs are also potently bioactive against the causative agent of human African trypanosomiasis, Trypanosoma brucei, both in vitro and in vivo. So far, however, there has been no direct evidence of tubulin engagement by these TPDs in T. brucei. Therefore, to enable further investigation of anti-trypanosomal TPDs, a TPD derivative amenable to photoaffinity labeling (PAL) was designed, synthesized, and evaluated in PAL experiments using HEK293 cells and T. brucei. The data arising confirmed specific labeling of T. brucei tubulin. In addition, proteomic data revealed differences in the labeling profiles of tubulin between HEK293 and T. brucei, suggesting structural differences between the TPD binding site(s) in mammalian and trypanosomal tubulin.


Subject(s)
Trypanocidal Agents , Trypanosoma brucei brucei , Trypanosomiasis, African , Animals , Humans , Tubulin/metabolism , HEK293 Cells , Proteomics , Trypanosomiasis, African/drug therapy , Trypanosoma brucei brucei/metabolism , Pyrimidines/chemistry , Trypanocidal Agents/chemistry , Mammals/metabolism
3.
ACS Pharmacol Transl Sci ; 6(11): 1651-1658, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37974623

ABSTRACT

The covalent reversible modification of proteins is a validated strategy for the development of probes and candidate therapeutics. However, the covalent reversible targeting of noncatalytic lysines is particularly challenging. Herein, we characterize the 2-hydroxy-1-naphthaldehyde (HNA) fragment as a targeted covalent reversible ligand of a noncatalytic lysine (Lys720) of the Krev interaction trapped 1 (KRIT1) protein. We show that the interaction of HNA with KRIT1 is highly specific, results in prolonged residence time of >8 h, and inhibits the Heart of glass 1 (HEG1)-KRIT1 protein-protein interaction (PPI). Screening of HNA derivatives identified analogs exhibiting similar binding modes as the parent fragment but faster target engagement and stronger inhibition activity. These results demonstrate that HNA is an efficient site-directing fragment with promise in developing HEG1-KRIT1 PPI inhibitors. Further, the aldimine chemistry, when coupled with templating effects that promote proximity, can produce a long-lasting reversible covalent modification of noncatalytic lysines.

4.
Bioorg Med Chem Lett ; 91: 129363, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37295616

ABSTRACT

Fluorinated alcohols and phenols are potentially useful as bioisosteres of the carboxylic acid functional group. To enable a direct comparison of the properties of fluorinated carboxylic acid surrogates with those of other commonly used, non-fluorinated bioisosteres, we conducted a structure-property relationship (SPR) study based on matched molecular pair (MMP) analyses. A series of representative examples have been characterized by experimentally determining physicochemical properties, such as acidity (pKa), lipophilicity (logD7.4), and permeability (PAMPA). The results presented can help estimate the relative changes in physicochemical properties that may be attainable by replacing the carboxylic acid functional group with fluorine containing surrogate structures.


Subject(s)
Alcohols , Carboxylic Acids , Carboxylic Acids/chemistry , Fluorine/chemistry
5.
Trends Pharmacol Sci ; 44(7): 474-488, 2023 07.
Article in English | MEDLINE | ID: mdl-37263826

ABSTRACT

The development of small-molecule inhibitors or stabilizers of selected protein-protein interactions (PPIs) of interest holds considerable promise for the development of research tools as well as candidate therapeutics. In this context, the covalent modification of selected residues within the target protein has emerged as a promising mechanism of action to obtain small-molecule modulators of PPIs with appropriate selectivity and duration of action. Different covalent labeling strategies are now available that can potentially allow for a rational, ground-up discovery and optimization of ligands as PPI inhibitors or stabilizers. This review article provides a synopsis of recent developments and applications of such tactics, with a particular focus on site-directed fragment tethering and proximity-enabled approaches.


Subject(s)
Proteins , Small Molecule Libraries , Humans , Protein Binding , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Proteins/chemistry , Ligands
6.
Chemistry ; 29(40): e202300696, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-36917701

ABSTRACT

Hydrogen bonding is a key molecular interaction in biological processes, drug delivery, and catalysis. This report describes a high throughput UV-Vis spectroscopic method to measure hydrogen bonding capacity using a pyrazinone sensor. This colormetric sensor reversibly binds to a hydrogen bond donor, resulting in a blue shift as additional equivalents of donor are added. Titration with excess equivalents of donor is used to determine the binding coefficient, ln(Keq ). Over 100 titrations were performed for a variety of biologically relevant compounds. This data enabled development a multiple linear regression model that is capable of predicting 95 % of ln(Keq ) values within 1 unit, allowing for the estimation of hydrogen bonding affinity from a single measurement. To show the effectiveness of the single point measurements, hydrogen bond strengths were obtained for a set of carboxylic acid bioisosteres. The values from the single point measurements were validated with full titrations.


Subject(s)
Colorimetry , Colorimetry/methods , Hydrogen Bonding , Ligands
7.
Bioorg Med Chem Lett ; 82: 129164, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36736493

ABSTRACT

For the Schistosoma mansoni flatworm pathogen, we report a structure-activity relationship of 25 derivatives of the N-phenylbenzamide compound, 1 (MMV687807), a Medicines for Malaria Venture compound for which bioactivity was originally identified in 2018. Synthesized compounds were cross-screened against the HEK 293 mammalian cells. Compounds 9 and 11 were identified as fast-acting schistosomicidal compounds whereby adult worm integrity was severely compromised within 1 h. Against HEK 293 mammalian cells, both compounds exhibited high CC50 values (9.8 ± 1.6 and 11.1 ± 0.2 µM respectively) which could translate to comfortable selectivity. When evaluated in a concentration-response format, compound 9 was active in the nanomolar range (EC50 = 80 nM), translating to a selectivity index of 123 over HEK 293 cells. The data encourage the further investigation of N-phenylbenzamides as antischistosomals.


Subject(s)
Schistosomiasis mansoni , Schistosomicides , Animals , Humans , HEK293 Cells , Neglected Diseases , Schistosoma mansoni , Schistosomiasis mansoni/drug therapy , Schistosomicides/pharmacology , Schistosomicides/therapeutic use
8.
Bioorg Med Chem Lett ; 81: 129123, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36608774

ABSTRACT

Trypanosoma brucei is a protozoan parasite that causes Human African Trypanosomiasis (HAT), a neglected tropical disease (NTD) that is endemic in 36 countries in sub-Saharan Africa. Only a handful drugs are available for treatment, and these have limitations, including toxicity and drug resistance. Using the natural product, curcumin, as a starting point, several curcuminoids and related analogs were evaluated against bloodstream forms of T. b. brucei. A particular subset of dibenzylideneacetone (DBA) compounds exhibited potent in vitro antitrypanosomal activity with sub-micromolar EC50 values. A structure-activity relationship study including 26 DBA analogs was initiated, and several compounds exhibited EC50 values as low as 200 nM. Cytotoxicity counter screens in HEK293 cells identified several compounds having selectivity indices above 10. These data suggest that DBAs offer starting points for a new small molecule therapy of HAT.


Subject(s)
Trypanocidal Agents , Trypanosoma brucei brucei , Trypanosomiasis, African , Animals , Humans , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use , Neglected Diseases/drug therapy , HEK293 Cells , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/parasitology , Structure-Activity Relationship
9.
J Med Chem ; 66(1): 435-459, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36534051

ABSTRACT

Microtubule (MT)-stabilizing 1,2,4-triazolo[1,5-a]pyrimidines (TPDs) hold promise as candidate therapeutics for Alzheimer's disease (AD) and other neurodegenerative conditions. However, depending on the choice of substituents around the TPD core, these compounds can elicit markedly different cellular phenotypes that likely arise from the interaction of TPD congeners with either one or two spatially distinct binding sites within tubulin heterodimers (i.e., the seventh site and the vinca site). In the present study, we report the design, synthesis, and evaluation of a series of new TPD congeners, as well as matched molecular pair analyses and computational studies, that further elucidate the structure-activity relationships of MT-active TPDs. These studies led to the identification of novel MT-normalizing TPD candidates that exhibit favorable ADME-PK, including brain penetration and oral bioavailability, as well as brain pharmacodynamic activity.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Pyrimidines/chemistry , Microtubules/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Tubulin/metabolism , Structure-Activity Relationship
10.
Pathogens ; 11(12)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36558759

ABSTRACT

Metals have been used in medicine since ancient times for the treatment of different ailments with various elements such as iron, gold and arsenic. Metal complexes have also been reported to show antibiotic and antiparasitic activity. In this context, we tested the antiparasitic potential of 10 organotin (IV) derivatives from 4-(4-methoxyphenylamino)-4 oxobutanoic acid (MS26) against seven eukaryotic pathogens of medical importance: Leishmania donovani, Trypanosoma cruzi, Trypanosoma brucei, Entamoeba histolytica, Giardia lamblia, Naegleria fowleri and Schistosoma mansoni. Among the compounds with and without antiparasitic activity, compound MS26Et3 stood out with a 50% effective concentration (EC50) of 0.21 and 0.19 µM against promastigotes and intracellular amastigotes of L. donovani, respectively, 0.24 µM against intracellular amastigotes of T. cruzi, 0.09 µM against T. brucei, 1.4 µM against N. fowleri and impaired adult S. mansoni viability at 1.25 µM. In terms of host/pathogen selectivity, MS26Et3 demonstrated relatively mild cytotoxicity toward host cells with a 50% viability concentration of 4.87 µM against B10R cells (mouse monocyte cell line), 2.79 µM against C2C12 cells (mouse myoblast cell line) and 1.24 µM against HEK923 cells (human embryonic kidney cell line). The selectivity index supports this molecule as a therapeutic starting point for a broad spectrum antiparasitic alternative. Proteomic analysis of host cells infected with L. donovani after exposure to MS26Et3 showed a reduced expression of Rab7, which may affect the fusion of the endosome with the lysosome, and, consequently, impairing the differentiation of L. donovani to the amastigote form. Future studies to investigate the molecular target(s) and mechanism of action of MS26Et3 will support its chemical optimization.

11.
Nano Lett ; 22(14): 5773-5779, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35849010

ABSTRACT

We report transport measurements on tunable single-molecule junctions of the organic perchlorotrityl radical molecule, contacted with gold electrodes at low temperature. The current-voltage characteristics of a subset of junctions shows zero-bias anomalies due to the Kondo effect and in addition elevated magnetoresistance (MR). Junctions without Kondo resonance reveal a much stronger MR. Furthermore, we show that the amplitude of the MR can be tuned by mechanically stretching the junction. On the basis of these findings, we attribute the high MR to an interference effect involving spin-dependent scattering at the metal-molecule interface and assign the Kondo effect to the unpaired spin located in the center of the molecule in asymmetric junctions.

12.
Curr Top Med Chem ; 22(15): 1219-1234, 2022.
Article in English | MEDLINE | ID: mdl-35546768

ABSTRACT

Unlike the oxetane ring, which, as evidenced by numerous studies, is known to play an increasingly important role in medicinal chemistry, the thietane ring has thus far received comparatively limited attention. Nonetheless, a growing number of reports now indicate that this 4- membered ring heterocycle may provide opportunities in analog design. In the present review article, we discuss the possible use and utility of the thietane fragment in medicinal chemistry and provide an overview of its properties and recent applications with a focus on isosteric replacements.


Subject(s)
Chemistry, Pharmaceutical
14.
Eur J Med Chem ; 218: 113399, 2021 Jun 05.
Article in English | MEDLINE | ID: mdl-33823393

ABSTRACT

The N-acylsulfonamide functional group is a feature of the pharmacophore of several biologically active molecules, including marketed drugs. Although this acidic moiety presents multiple points of attachments that could be exploited to introduce structural diversification, depending on the circumstances, the replacement of the functional group itself with a suitable surrogate, or bioisostere, may be desirable. A number of N-acylsulfonamide bioisosteres have been developed over the years that provide opportunities to modulate both structure and physicochemical properties of this important structural motif. To enable an assessment of the relative impact on physicochemical properties that these replacements may have compared to the N-acylsulfonamide group, we conducted a structure-property relationship study based on matched molecular pairs, in which the N-acylsulfonamide moiety of common template reference structures is replaced with a series of bioisosteres. The data presented, which include an assessment of relative changes in acidity, permeability, lipophilicity and intrinsic solubility, provides a basis for informed decisions when deploying N-acylsulfonamides, or surrogates thereof, in analog design.


Subject(s)
Sulfonamides/chemistry , Hydrogen Bonding , Models, Molecular , Molecular Structure , Sulfonamides/chemical synthesis
15.
Eur J Med Chem ; 165: 332-346, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30703745

ABSTRACT

The 1,2,4-triazolo[1,5-a]pyrimidine (TP) heterocycle, in spite of its relatively simple structure, has proved to be remarkably versatile as evidenced by its use in many different applications reported over the years in different areas of drug design. For example, as the ring system of TPs is isoelectronic with that of purines, this heterocycle has been proposed as a possible surrogate of the purine ring. However, depending on the choice of substituents, the TP ring has also been described as a potentially viable bio-isostere of the carboxylic acid functional group and of the N-acetyl fragment of ε-N-acetylated lysine. In addition, the metal-chelating properties of the TP ring have also been exploited to generate candidate treatments for cancer and parasitic diseases. In the present review article, we discuss recent applications of the TP scaffold in medicinal chemistry, and provide an overview of its properties and methods of synthesis.


Subject(s)
Chemistry, Pharmaceutical/methods , Pyrimidines/chemistry , Triazoles/chemistry , Animals , Drug Design , Humans , Neoplasms/drug therapy , Parasitic Diseases/drug therapy , Pyrimidines/therapeutic use , Structure-Activity Relationship , Triazoles/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...