ABSTRACT
The guanine-based purines (GBPs) have essential extracellular functions such as modulation of glutamatergic transmission and trophic effects on neurons and astrocytes. We previously showed that GBPs, such as guanosine-5'-monophosphate (GMP) or guanosine (GUO), promote the reorganization of extracellular matrix proteins in astrocytes, and increase the number of neurons in a neuron-astrocyte co-culture protocol. To delineate the molecular basis underlying these effects, we isolated cerebellar neurons in culture and treated them with a conditioned medium derived from astrocytes previously exposed to GUO or GMP (GBPs-ACM) or, directly, with GUO or GMP. Agreeing with the previous studies, there was an increase in the number of ß-tubulin III-positive neurons in both conditions, compared with controls. Interestingly, the increase in the number of neurons in the neuronal cultures treated directly with GUO or GMP was more prominent, suggesting a direct interaction of GBPs on cerebellar neurons. To investigate this issue, we assessed the role of adenosine and glutamate receptors and related intracellular signaling pathways after GUO or GMP treatment. We found an involvement of A2A adenosine receptors, ionotropic glutamate N-methyl-D-aspartate (NMDA), and non-NMDA receptors in the increased number of cerebellar neurons. The signaling pathways extracellular-regulated kinase (ERK), calcium-calmodulin-dependent kinase-II (CaMKII), protein kinase C (PKC), phosphatidilinositol-3'-kinase (PI3-K), and protein kinase A (PKA) are also potentially involved with GMP and GUO effect. Such results suggest that GMP and GUO, and molecules released in GBPs-ACM promote the survival or maturation of primary cerebellar neurons or both via interaction with adenosine and glutamate receptors.
Subject(s)
Adenosine/metabolism , Guanosine/metabolism , Neurons/metabolism , Receptors, Glutamate/metabolism , Animals , Astrocytes/metabolism , Central Nervous System/metabolism , Glutamic Acid/metabolism , Guanosine Monophosphate/metabolism , Receptors, Purinergic P1/metabolismABSTRACT
Guanine derivatives (GD) have been shown to exert relevant extracellular effects as intercellular messengers, neuromodulators in the central nervous system, and trophic effects on astrocytes and neurons. Astrocytes have been pointed out as the major source of trophic factors in the nervous system, however, several trophic effects of astrocytic-released soluble factors are mediated through modulation of extracellular matrix (ECM) proteins. In this study, we investigated the effects of guanosine-5'-monophosphate (GMP) and guanosine (GUO) on the expression and organization of ECM proteins in cerebellar astrocytes. Moreover, to evaluate the effects of astrocytes pre-treated with GMP or GUO on cerebellar neurons we used a neuron-astrocyte coculture model. GMP or GUO alters laminin and fibronectin organization from a punctate to a fibrillar pattern, however, the expression levels of the ECM proteins were not altered. Guanine derivatives-induced alteration of ECM proteins organization is mediated by activation of mitogen activated protein kinases (MAPK), CA(2+)-calmodulin-dependent protein kinase II (CaMK-II), protein kinase C (PKC), and protein kinase A (PKA) pathways. Furthermore, astrocytes treated with GMP or GUO promoted an increased number of cerebellar neurons in coculture, without altering the neuritogenesis pattern. No proliferation of neurons or astrocytes was observed due to GMP or GUO treatment. Our results show that guanine derivatives promote a reorganization of the ECM proteins produced by astrocytes, which might be responsible for a better interaction with neurons in cocultures.