Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 26(20): 14637-14650, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38742831

ABSTRACT

Hydration water dynamics, structure, and thermodynamics are crucially important to understand and predict water-mediated properties at molecular interfaces. Yet experimentally and directly quantifying water behavior locally near interfaces at the sub-nanometer scale is challenging, especially at interfaces submerged in biological solutions. Overhauser dynamic nuclear polarization (ODNP) experiments measure equilibrium hydration water dynamics within 8-15 angstroms of a nitroxide spin probe on instantaneous timescales (10 picoseconds to nanoseconds), making ODNP a powerful tool for probing local water dynamics in the vicinity of the spin probe. As with other spectroscopic techniques, concurrent computational analysis is necessary to gain access to detailed molecular level information about the dynamic, structural, and thermodynamic properties of water from experimental ODNP data. We chose a model system that can systematically tune the dynamics of water, a water-glycerol mixture with compositions ranging from 0 to 0.3 mole fraction glycerol. We demonstrate the ability of molecular dynamics (MD) simulations to compute ODNP spectroscopic quantities, and show that translational, rotational, and hydrogen bonding dynamics of hydration water align strongly with spectroscopic ODNP parameters. Moreover, MD simulations show tight correlations between the dynamic properties of water that ODNP captures and the structural and thermodynamic behavior of water. Hence, experimental ODNP readouts of varying water dynamics suggest changes in local structural and thermodynamic hydration water properties.

2.
Chem Sci ; 14(48): 14115-14123, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38098727

ABSTRACT

Diffusion of atoms or ions in solid crystalline lattice is crucial in many areas of solid-state technology. However, controlling ion diffusion and migration is challenging in nanoscale lattices. In this work, we intentionally insert a CdZnS alloyed interface layer, with small cationic size mismatch with Mn(ii) dopant ions, as an "atomic trap" to facilitate directional (outward and inward) dopant migration inside core/multi-shell quantum dots (QDs) to reduce the strain from the larger cationic mismatch between dopants and host sites. Furthermore, it was found that the initial doping site/environment is critical for efficient dopant trapping and migration. Specifically, a larger Cd(ii) substitutional site (92 pm) for the Mn(ii) dopant (80 pm), with larger local lattice distortion, allows for efficient atomic trapping and dopant migration; while Mn(ii) dopant ions can be very stable with no significant migration when occupying a smaller Zn(ii) substitutional site (74 pm). Density functional theory calculations revealed a higher energy barrier for a Mn(ii) dopant hopping from the smaller Zn substitutional tetrahedral (Td) site as compared to a larger Cd substitutional Td site. The controlled dopant migration by "atomic trapping" inside QDs provides a new way to fine tune the properties of doped nanomaterials.

3.
ACS Nano ; 17(22): 22467-22477, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37962602

ABSTRACT

All-inorganic metal halide perovskites (ABX3, X = Cl, Br, or I) show great potential for the fabrication of optoelectronic devices, but the toxicity and instability of lead-based perovskites limit their applications. Shell passivation with a more stable lead-free perovskite is a promising strategy to isolate unstable components from the environment as well as a feasible way to tune the optical properties. However, it is challenging to grow core/shell perovskite nanocrystals (NCs) due to the soft ionic nature of the perovskite lattice. In this work, we developed a facile method to grow a lead-free CsMnCl3 shell on the surface of CsPbCl3 NCs to form CsPbCl3/CsMnCl3 core/shell NCs with enhanced environmental stability and improved photoluminescence (PL) quantum yields (QYs). More importantly, the resulting core/shell perovskite NCs have color-tunable PL due to B-site ion diffusion at the interface of the core/shell NCs. Specifically, B-site Mn diffusion from the CsMnCl3 shell to the CsPbCl3 core leads to a Mn-doped CsPbCl3 core (i.e., Mn:CsPbCl3), which can turn on the Mn PL at around 600 nm. The ratio of Mn PL and host CsPbCl3 PL is highly tunable as a function of the thermal annealing time of the CsPbCl3/CsMnCl3 core/shell NCs. While the halide anion exchange for all-inorganic metal halide perovskites has been well-developed for band-gap-engineered materials, interfacial B-site diffusion in core/shell perovskite NCs is a promising approach for both tunable optical properties and enhanced environmental stability.

4.
J Chem Phys ; 157(17): 174204, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36347669

ABSTRACT

This article presents a standardized alternative to the traditional phase cycling approach employed by the overwhelming majority of contemporary Nuclear Magnetic Resonance (NMR) research. On well-tested, stable NMR systems running well-tested pulse sequences in highly optimized, homogeneous magnetic fields, the hardware and/or software responsible for traditional phase cycling quickly isolate a meaningful subset of data by averaging and discarding between 3/4 and 127/128 of the digitized data. In contrast, the new domain colored coherence transfer (DCCT) approach enables the use of all the information acquired from all transients. This approach proves to be particularly useful where multiple coherence pathways are required, or for improving the signal when the magnetic fields are inhomogeneous and unstable. For example, the authors' interest in the nanoscale heterogeneities of hydration dynamics demands increasingly sophisticated and automated measurements deploying Overhauser Dynamic Nuclear Polarization (ODNP) in low-field electromagnets, where phase cycling and signal averaging perform suboptimally. This article demonstrates the capabilities of DCCT on ODNP data and with a collection of algorithms that provide robust phasing, avoidance of baseline distortion, and the ability to realize relatively weak signals amid background noise through signal-averaged correlation alignment. The DCCT schema works by combining a multidimensional organization of phase cycled data with a specific methodology for visualizing the resulting complex-valued data. It could be extended to other forms of coherent spectroscopy seeking to analyze multiple coherence transfer pathways.


Subject(s)
Algorithms , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy/methods , Magnetic Fields , Software
5.
J Phys Chem Lett ; 11(15): 5992-5999, 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32633980

ABSTRACT

Doping through the incorporation of transition metal ions allows for the emergence of new optical, electrical, and magnetic properties in quantum dots (QDs). While dopants can be introduced into QDs through many synthetic methods, the control of dopant location and host-dopant (H-D) coupling through directional dopant movement is still largely unexplored. In this work, we have studied dopant behaviors in Mn:CdS/ZnS core/shell QDs and found that dopant transport behavior is very sensitive to the temperature and microenvironments within the QDs. The migration of Mn toward the alloyed interface of the core/shell QDs, below a temperature boundary (Tb) at ∼200 °C, weakens the H-D interactions. At temperatures higher than the Tb, however, dopant ejection and global alloying of CdS/ZnS QDs can occur, leading to stronger H-D coupling. The behavior of incorporated dopants inside QDs is fundamentally important for understanding doping mechanisms and the host-dopant interaction-dependent properties of doped nanomaterials.

6.
Methods Enzymol ; 615: 131-175, 2019.
Article in English | MEDLINE | ID: mdl-30638529

ABSTRACT

We outline the physical properties of hydration water that are captured by Overhauser Dynamic Nuclear Polarization (ODNP) relaxometry and explore the insights that ODNP yields about the water and the surface that this water is coupled to. As ODNP relies on the pairwise cross-relaxation between the electron spin of a spin probe and a proton nuclear spin of water, it captures the dynamics of single-particle diffusion of an ensemble of water molecules moving near the spin probe. ODNP principally utilizes the same physics as other nuclear magnetic resonance (NMR) relaxometry (i.e., relaxation measurement) techniques. However, in ODNP, electron paramagnetic resonance (EPR) excites the electron spins probes and their high net polarization acts as a signal amplifier. Furthermore, it renders ODNP parameters highly sensitive to water moving at rates commensurate with the EPR frequency of the spin probe (typically 10GHz). Also, ODNP selectively enhances the NMR signal contributions of water moving within close proximity to the spin label. As a result, ODNP can capture ps-ns movements of hydration waters with high sensitivity and locality, even in samples with protein concentrations as dilute as 10 µM. To date, the utility of the ODNP technique has been demonstrated for two major applications: the characterization of the spatial variation in the properties of the hydration layer of proteins or other surfaces displaying topological diversity, and the identification of structural properties emerging from highly disordered proteins and protein domains. The former has been shown to correlate well with the properties of hydration water predicted by MD simulations and has been shown capable of evaluating the hydrophilicity or hydrophobicity of a surface. The latter has been demonstrated for studies of an interhelical loop of proteorhodopsin, the partial structure of α-synuclein embedded at the lipid membrane surface, incipient structures adopted by tau proteins en route to fibrils, and the structure and hydration profile of a transmembrane peptide. This chapter focuses on offering a mechanistic understanding of the ODNP measurement and the molecular dynamics encoded in the ODNP parameters. In particular, it clarifies how the electron-nuclear dipolar coupling encodes information about the molecular dynamics in the nuclear spin self-relaxation and, more importantly, the electron-nuclear spin cross-relaxation rates. The clarification of the molecular dynamics underlying ODNP should assist in establishing a connection to theory and computer simulation that will offer far richer interpretations of ODNP results in future studies.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Molecular Dynamics Simulation , Proteins/chemistry , Water/chemistry , Animals , Bacteria/metabolism , Electron Spin Resonance Spectroscopy , Humans , Hydrophobic and Hydrophilic Interactions , Membrane Lipids/chemistry , Rhodopsins, Microbial/chemistry , Spin Labels , alpha-Synuclein/chemistry
7.
Langmuir ; 34(37): 11139-11146, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30134099

ABSTRACT

This report describes a characterization study of the surfaces of CsPbBr3 and CsPbBr3- xI x perovskite nanoparticles (NPs) obtained via a simultaneous purification and halide exchange (HE) postsynthetic processing technique. We studied composition-dependent NP-ligand interactions via diffusion ordered NMR (DOSY) and quantified resulting photoluminescence quantum yield (QY) as a function of halide exchange as well as ligand exchange. Importantly, ligand binding strength and QY were found to decrease when successive purification and/or halide/ligand exchange steps were taken without careful concurrent additions of acid and base ligands. This suggests that ligands added during postsynthetic processing steps are localized at the surface of the NP, passivating open surface sites. Further, we show that CsPbBr3- xI x with increasing CsPbI3 character, obtained via the same method, have decreasing ligand density, from 6.4 to 1.4 to 0.2 nm-2, indicating the composition-dependence of surface ligand binding, which also has consequences on the QY of the resulting mixed-halide NPs. These results shed further light on the importance of ion-ligand moiety additions during purification and halide exchange of highly emissive CsPbBr3 NPs to maintain their as-synthesized properties, as well as the intrinsic differences in surfaces binding and photostability between near-unity QY CsPbBr3 and mixed-halide CsPbBr3- xI x NPs.

8.
J Magn Reson ; 261: 199-204, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26507308

ABSTRACT

The necessary resonator employed in pulse electron paramagnetic resonance (EPR) rings after the excitation pulse and creates a finite detector dead-time that ultimately prevents the detection of signal from fast relaxing spin systems, hindering the application of pulse EPR to room temperature measurements of interesting chemical or biological systems. We employ a recently available high bandwidth arbitrary waveform generator (AWG) to produce a cancellation pulse that precisely destructively interferes with the resonant cavity ring-down. We find that we can faithfully detect EPR signal at all times immediately after, as well as during, the excitation pulse. This is a proof of concept study showcasing the capability of AWG pulses to precisely cancel out the resonator ring-down, and allow for the detection of EPR signal during the pulse itself, as well as the dead-time of the resonator. However, the applicability of this approach to conventional EPR experiments is not immediate, as it hinges on either (1) the availability of low-noise microwave sources and amplifiers to produce the necessary power for pulse EPR experiment or (2) the availability of very high conversion factor micro coil resonators that allow for pulse EPR experiments at modest microwave power.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Algorithms , Fourier Analysis , Microwaves , Polystyrenes/chemistry , Temperature
9.
J Am Chem Soc ; 137(37): 12013-23, 2015 Sep 23.
Article in English | MEDLINE | ID: mdl-26256693

ABSTRACT

The emerging Overhauser effect dynamic nuclear polarization (ODNP) technique measures the translational mobility of water within the vicinity (5-15 Å) of preselected sites. The work presented here expands the capabilities of the ODNP technique and illuminates an important, previously unseen, property of the translational diffusion dynamics of water at the surface of DNA duplexes. We attach nitroxide radicals (i.e., spin labels) to multiple phosphate backbone positions of DNA duplexes, allowing ODNP to measure the hydration dynamics at select positions along the DNA surface. With a novel approach to ODNP analysis, we isolate the contributions of water molecules at these sites that undergo free translational diffusion from water molecules that either loosely bind to or exchange protons with the DNA. The results reveal that a significant population of water in a localized volume adjacent to the DNA surface exhibits fast, bulk-like characteristics and moves unusually rapidly compared to water found in similar probe volumes near protein and membrane surfaces. Control studies show that the observation of these characteristics are upheld even when the DNA duplex is tethered to streptavidin or the mobility of the nitroxides is altered. This implies that, as compared to protein or lipid surfaces, it is an intrinsic feature of the DNA duplex surface that it interacts only weakly with a significant fraction of the surface hydration water network. The displacement of this translationally mobile water is energetically less costly than that of more strongly bound water by up to several kBT and thus can lower the activation barrier for interactions involving the DNA surface.


Subject(s)
DNA/chemistry , Water/chemistry , Base Sequence , DNA/genetics , Diffusion , Models, Molecular , Nucleic Acid Conformation , Rotation , Spin Labels , Surface Properties
10.
J Chem Phys ; 142(21): 212302, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-26049420

ABSTRACT

The development, applications, and current challenges of the pulsed ESR technique of two-dimensional Electron-Electron Double Resonance (2D ELDOR) are described. This is a three-pulse technique akin to 2D Exchange Nuclear Magnetic Resonance, but involving electron spins, usually in the form of spin-probes or spin-labels. As a result, it required the extension to much higher frequencies, i.e., microwaves, and much faster time scales, with π/2 pulses in the 2-3 ns range. It has proven very useful for studying molecular dynamics in complex fluids, and spectral results can be explained by fitting theoretical models (also described) that provide a detailed analysis of the molecular dynamics and structure. We discuss concepts that also appear in other forms of 2D spectroscopy but emphasize the unique advantages and difficulties that are intrinsic to ESR. Advantages include the ability to tune the resonance frequency, in order to probe different motional ranges, while challenges include the high ratio of the detection dead time vs. the relaxation times. We review several important 2D ELDOR studies of molecular dynamics. (1) The results from a spin probe dissolved in a liquid crystal are followed throughout the isotropic → nematic → liquid-like smectic → solid-like smectic → crystalline phases as the temperature is reduced and are interpreted in terms of the slowly relaxing local structure model. Here, the labeled molecule is undergoing overall motion in the macroscopically aligned sample, as well as responding to local site fluctuations. (2) Several examples involving model phospholipid membranes are provided, including the dynamic structural characterization of the boundary lipid that coats a transmembrane peptide dimer. Additionally, subtle differences can be elicited for the phospholipid membrane phases: liquid disordered, liquid ordered, and gel, and the subtle effects upon the membrane, of antigen cross-linking of receptors on the surface of plasma membrane, vesicles can be observed. These 2D ELDOR experiments are performed as a function of mixing time, Tm, i.e., the time between the second and third π/2 pulses, which provides a third dimension. In fact, a fourth dimension may be added by varying the ESR frequency/magnetic field combination. Therefore, (3) it is shown how continuous-wave multifrequency ESR studies enable the decomposition of complex dynamics of, e.g., proteins by virtue of their respective time scales. These studies motivate our current efforts that are directed to extend 2D ELDOR to higher frequencies, 95 GHz in particular (from 9 and 17 GHz), in order to enable multi-frequency 2D ELDOR. This required the development of quasi-optical methods for performing the mm-wave experiments, which are summarized. We demonstrate state-of-the-art 95 GHz 2D ELDOR spectroscopy through its ability to resolve the two signals from a spin probe dissolved in both the lipid phase and the coexisting aqueous phase. As current 95 GHz experiments are restricted by limited spectral coverage of the π/2 pulse, as well as the very short T2 relaxation times of the electron spins, we discuss how these limitations are being addressed.


Subject(s)
Electrons , Electron Spin Resonance Spectroscopy , Molecular Dynamics Simulation , Motion
11.
J Am Chem Soc ; 136(26): 9396-403, 2014 Jul 02.
Article in English | MEDLINE | ID: mdl-24888581

ABSTRACT

ATP-dependent binding of the chaperonin GroEL to its cofactor GroES forms a cavity in which encapsulated substrate proteins can fold in isolation from bulk solution. It has been suggested that folding in the cavity may differ from that in bulk solution owing to steric confinement, interactions with the cavity walls, and differences between the properties of cavity-confined and bulk water. However, experimental data regarding the cavity-confined water are lacking. Here, we report measurements of water density and diffusion dynamics in the vicinity of a spin label attached to a cysteine in the Tyr71 → Cys GroES mutant obtained using two magnetic resonance techniques: electron-spin echo envelope modulation and Overhauser dynamic nuclear polarization. Residue 71 in GroES is fully exposed to bulk water in free GroES and to confined water within the cavity of the GroEL-GroES complex. Our data show that water density and translational dynamics in the vicinity of the label do not change upon complex formation, thus indicating that bulk water-exposed and cavity-confined GroES surface water share similar properties. Interestingly, the diffusion dynamics of water near the GroES surface are found to be unusually fast relative to other protein surfaces studied. The implications of these findings for chaperonin-assisted folding mechanisms are discussed.


Subject(s)
Chaperonin 10/chemistry , Chaperonin 60/chemistry , Base Sequence , Chaperonin 10/genetics , Chaperonin 10/metabolism , Chaperonin 60/genetics , Chaperonin 60/metabolism , Electron Spin Resonance Spectroscopy , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Mutation , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Folding , Spin Labels , Water/metabolism
12.
J Am Chem Soc ; 136(6): 2642-9, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24456096

ABSTRACT

Effects of specific ions on the local translational diffusion of water near large hydrophilic lipid vesicle surfaces were measured by Overhauser dynamic nuclear polarization (ODNP). ODNP relies on an unpaired electron spin-containing probe located at molecular or surface sites to report on the dynamics of water protons within ~10 Å from the spin probe, which give rise to spectral densities for electron-proton cross-relaxation processes in the 10 GHz regime. This pushes nuclear magnetic resonance relaxometry to more than an order of magnitude higher frequencies than conventionally feasible, permitting the measurement of water moving with picosecond to subnanosecond correlation times. Diffusion of water within ~10 Å of, i.e., up to ~3 water layers around the spin probes located on hydrophilic lipid vesicle surfaces is ~5 times retarded compared to the bulk water translational diffusion. This directly reflects on the activation barrier for surface water diffusion, i.e., how tightly water is bound to the hydrophilic surface and surrounding waters. We find this value to be modulated by the presence of specific ions in solution, with its order following the known Hofmeister series. While a molecular description of how ions affect the hydration structure at the hydrophilic surface remains to be answered, the finding that Hofmeister ions directly modulate the surface water diffusivity implies that the strength of the hydrogen bond network of surface hydration water is directly modulated on hydrophilic surfaces.


Subject(s)
Membrane Lipids/chemistry , Water/chemistry , Diffusion , Ions , Models, Molecular , Surface Properties , Transport Vesicles/chemistry
13.
Prog Nucl Magn Reson Spectrosc ; 74: 33-56, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24083461

ABSTRACT

Liquid state Overhauser effect Dynamic Nuclear Polarization (ODNP) has experienced a recent resurgence of interest. The ODNP technique described here relies on the double resonance of electron spin resonance (ESR) at the most common, i.e. X-band (∼10GHz), frequency and ¹H nuclear magnetic resonance (NMR) at ∼15 MHz. It requires only a standard continuous wave (cw) ESR spectrometer with an NMR probe inserted or built into an X-band cavity. We focus on reviewing a new and powerful manifestation of ODNP as a high frequency NMR relaxometry tool that probes dipolar cross relaxation between the electron spins and the ¹H nuclear spins at X-band frequencies. This technique selectively measures the translational mobility of water within a volume extending 0.5-1.5 nm outward from a nitroxide radical spin probe that is attached to a targeted site of a macromolecule. It allows one to study the dynamics of water that hydrates or permeates the surface or interior of proteins, polymers, and lipid membrane vesicles. We begin by reviewing the recent advances that have helped develop ODNP into a tool for mapping the dynamic landscape of hydration water with sub-nanometer locality. In order to bind this work coherently together and to place it in the context of the extensive body of research in the field of NMR relaxometry, we then rephrase the analytical model and extend the description of the ODNP-derived NMR signal enhancements. This extended model highlights several aspects of ODNP data analysis, including the importance of considering all possible effects of microwave sample heating, the need to consider the error associated with various relaxation rates, and the unique ability of ODNP to probe the electron-¹H cross-relaxation process, which is uniquely sensitive to fast (tens of ps) dynamical processes. By implementing the relevant corrections in a stepwise fashion, this paper draws a consensus result from previous ODNP procedures and then shows how such data can be further corrected to yield clear and reproducible saturation of the NMR hyperpolarization process. Finally, drawing on these results, we broadly survey the previous ODNP dynamics literature. We find that the vast number of published, empirical hydration dynamics data can be reproducibly classified into regimes of surface, interfacial, vs. buried water dynamics.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Water/chemistry
14.
J Magn Reson ; 235: 95-108, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23999530

ABSTRACT

We present arbitrary control over a homogenous spin system, demonstrated on a simple, home-built, electron paramagnetic resonance (EPR) spectrometer operating at 8-10 GHz (X-band) and controlled by a 1 GHz arbitrary waveform generator (AWG) with 42 dB (i.e. 14-bit) of dynamic range. Such a spectrometer can be relatively easily built from a single DAC (digital to analog converter) board with a modest number of stock components and offers powerful capabilities for automated digital calibration and correction routines that allow it to generate shaped X-band pulses with precise amplitude and phase control. It can precisely tailor the excitation profiles "seen" by the spins in the microwave resonator, based on feedback calibration with experimental input. We demonstrate the capability to generate a variety of pulse shapes, including rectangular, triangular, Gaussian, sinc, and adiabatic rapid passage waveforms. We then show how one can precisely compensate for the distortion and broadening caused by transmission into the microwave cavity in order to optimize corrected waveforms that are distinctly different from the initial, uncorrected waveforms. Specifically, we exploit a narrow EPR signal whose width is finer than the features of any distortions in order to map out the response to a short pulse, which, in turn, yields the precise transfer function of the spectrometer system. This transfer function is found to be consistent for all pulse shapes in the linear response regime. In addition to allowing precise waveform shaping capabilities, the spectrometer presented here offers complete digital control and calibration of the spectrometer that allows one to phase cycle the pulse phase with 0.007° resolution and to specify the inter-pulse delays and pulse durations to ≤ 250 ps resolution. The implications and potential applications of these capabilities will be discussed.


Subject(s)
Analog-Digital Conversion , Electron Spin Resonance Spectroscopy/instrumentation , Electron Spin Resonance Spectroscopy/methods , Calibration , Electromagnetic Fields , Electronics , Equipment Design , Fourier Analysis , Microwaves , Normal Distribution , Signal Processing, Computer-Assisted/instrumentation , Signal-To-Noise Ratio , Software , Wavelet Analysis
15.
Microporous Mesoporous Mater ; 178: 113-118, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23837010

ABSTRACT

We present a new methodological basis for selectively illuminating a dilute population of fluid within a porous medium. Specifically, transport in porous materials can be analyzed by now-standard nuclear magnetic resonance (NMR) relaxometry and NMR pulsed field gradient (PFG) diffusometry methods in combination with with the prominent NMR signal amplification tool, dynamic nuclear polarization (DNP). The key components of the approach introduced here are (1) to selectively place intrinsic or extrinsic paramagnetic probes at the site or local volume of interest within the sample, (2) to amplify the signal from the local solvent around the paramagnetic probes with Overhauser DNP, which is performed in situ and under ambient conditions, and (3) to observe the ODNP-enhanced solvent signal with 1D or 2D NMR relaxometry methods, thus selectively amplifying only the relaxation dynamics of the fluid that resides in or percolates through the local porous volume that contains the paramagnetic probe. Here, we demonstrate the proof of principle of this approach by selectively amplifying the NMR signal of only one solvent population, which is in contact with a paramagnetic probe and occluded from a second solvent population. An apparent one-component T2 relaxation decay is shown to actually contain two distinct solvent populations. The approach outlined here should be universally applicable to a wide range of other 1D and 2D relaxometry and PFG diffusometry measurements, including T1-T2 or T1-D correlation maps, where the occluded population containing the paramagnetic probes can be selectively amplified for its enhanced characterization.

16.
Biomacromolecules ; 14(5): 1395-402, 2013 May 13.
Article in English | MEDLINE | ID: mdl-23540713

ABSTRACT

Complex coacervation is a phenomenon characterized by the association of oppositely charged polyelectrolytes into micrometer-scale liquid condensates. This process is the purported first step in the formation of underwater adhesives by sessile marine organisms, as well as the process harnessed for the formation of new synthetic and protein-based contemporary materials. Efforts to understand the physical nature of complex coacervates are important for developing robust adhesives, injectable materials, or novel drug delivery vehicles for biomedical applications; however, their internal fluidity necessitates the use of in situ characterization strategies of their local dynamic properties, capabilities not offered by conventional techniques such as X-ray scattering, microscopy, or bulk rheological measurements. Herein, we employ the novel magnetic resonance technique Overhauser dynamic nuclear polarization enhanced nuclear magnetic resonance (DNP), together with electron paramagnetic resonance (EPR) line shape analysis, to concurrently quantify local molecular and hydration dynamics, with species- and site-specificity. We observe striking differences in the structure and dynamics of the protein-based biomimetic complex coacervates from their synthetic analogues, which is an asymmetric collapse of the polyelectrolyte constituents. From this study we suggest charge heterogeneity within a given polyelectrolyte chain to be an important parameter by which the internal structure of complex coacervates may be tuned. Acquiring molecular-level insight to the internal structure and dynamics of dynamic polymer complexes in water through the in situ characterization of site- and species-specific local polymer and hydration dynamics should be a promising general approach that has not been widely employed for materials characterization.


Subject(s)
Biomimetic Materials/chemistry , Hyaluronic Acid/chemistry , Water/chemistry , Amino Acid Sequence , Animals , Electron Spin Resonance Spectroscopy , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Mytilus edulis/chemistry , Recombinant Proteins/chemistry , Rheology , Spin Labels , Static Electricity
17.
J Am Chem Soc ; 135(11): 4175-8, 2013 Mar 20.
Article in English | MEDLINE | ID: mdl-23347324

ABSTRACT

The translational hydration dynamics within 0.5-1.5 nm of the surface of a DPPC liposome, a model biomacromolecular surface, is analyzed by the recently developed Overhauser dynamic nuclear polarization (ODNP) technique. We find that dramatic changes to the bulk solvent cause only weak changes in the surface hydration dynamics. Specifically, both a >10-fold increase in bulk viscosity and the restriction of diffusion by confinement on a multiple nm length-scale change the local translational diffusion coefficient of the surface water surrounding the lipid bilayer by <2.5-fold. By contrast, previous ODNP studies have shown that changes to the biomacromolecular surface induced by folding, binding, or aggregation can cause local hydration dynamics to vary by factors of up to 30. We suggest that the surface topology and chemistry at the ≤1.5 nm scale, rather than the characteristics of the solvent, nearly exclusively determine the macromolecule's surface hydration dynamics.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/analogs & derivatives , Liposomes/chemistry , Water/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Diffusion , Solutions/chemistry , Surface Properties , Viscosity
19.
J Chem Phys ; 131(23): 234506, 2009 Dec 21.
Article in English | MEDLINE | ID: mdl-20025334

ABSTRACT

Portable NMR systems generally suffer from poor field homogeneity and are therefore used more commonly for imaging and relaxation measurements rather than for spectroscopy. In recent years, various approaches have been proposed to increase the sample volume that is usable for spectroscopy. These include approaches based on manual shimming and those based on clever combinations of modulated radio frequency and gradient fields. However, this volume remains small and, therefore, of limited utility. We present improved pulses designed to correct for inhomogeneous dispersion across wide ranges of frequency offsets without eliminating chemical shift or spatial encoding. This method, based on the adiabatic double passage, combines the relatively larger corrections available from spatially matched rf gradients [C. Meriles et al., J. Magn. Reson. 164, 177 (2003)]. with the adjustable corrections available from time-modulated static field gradients [D. Topgaard et al., Proc. Natl. Acad. Sci. U.S.A. 101, 17576 (2004)]. We explain the origins of these corrections with a theoretical model that simplifies and expedites the design of the pulse waveforms. We also present a generalized method for evaluating and comparing pulses designed for inhomogeneity correction. Experiments validate this method and support simulations that offer new possibilities for significantly enhanced performance in portable environments.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Methods , Models, Theoretical
20.
Org Lett ; 5(15): 2695-8, 2003 Jul 24.
Article in English | MEDLINE | ID: mdl-12868892

ABSTRACT

[structure: see text] A strategy to restrict the highly flexible backbone conformation of a peptide nucleic acid (PNA) by incorporation of a cyclopentane ring is proposed. An asymmetric synthesis of cyclopentane-modified PNA is reported, and its binding properties were determined. The cyclopentane ring leads to a significant improvement in the binding properties of the resulting PNA to DNA and RNA.


Subject(s)
Cyclopentanes/chemical synthesis , Cyclopentanes/metabolism , DNA/metabolism , Peptide Nucleic Acids/chemical synthesis , Peptide Nucleic Acids/metabolism , RNA/metabolism , Alkylation , Drug Design , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...