Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Clin Pharmacokinet ; 63(6): 901-915, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38907175

ABSTRACT

BACKGROUND: Afferent neuronal hypersensitization via P2X3 receptor signaling has been implicated as a driver of several disorders, including refractory chronic cough, endometriosis, diabetic neuropathic pain, and overactive bladder. Eliapixant, a selective P2X3 receptor antagonist, has been in clinical development for all four disorders. OBJECTIVE: This paper describes pharmacokinetic (PK) and safety data from two phase I studies of eliapixant in healthy Japanese and Chinese participants and compares those data within the two populations and with previous multiple dose data from Caucasian participants. METHODS: Two separate phase I, single-center, randomized, placebo-controlled studies were conducted with healthy male participants. The Japanese study was single-blind and the Chinese study was double-blind. Eliapixant was administered as an oral amorphous solid dispersion immediate-release tablet in strengths of 25 mg, 75 mg, and 150 mg. PK characteristics after a single dose (SD) and at steady state (multiple dose [MD], twice daily), adverse events (AEs), and tolerability were evaluated. A post hoc comparison of PK characteristics after SD of eliapixant in Japanese and Chinese participants, and after MD of eliapixant in Japanese, Chinese, and Caucasian participants, was performed. RESULTS: Overall, 36/39 participants enrolled in the Japanese/Chinese studies, respectively (mean [standard deviation] age 25.4 [6.5] and 26.7 [5.0] years, respectively). After SD administration, maximum plasma concentration (Cmax) was higher among Japanese than Chinese participants in the 25 mg and 75 mg dose groups, but comparable in the 150 mg dose group. The area under the concentration-time curve (AUC) was comparable between Japanese and Chinese participants in the 25 mg and 75 mg dose groups, but lower among Japanese participants in the 150 mg group. Half-lives after SD and MD administration were also comparable in Japanese and Chinese participants. The post hoc analysis included 26 Japanese, 30 Chinese, and 50 Caucasian participants. Comparable exposure (Cmax,md and AUC[0-12]md) was observed after MD administration of eliapixant in Chinese and/or Japanese compared with Caucasian participants (geometric mean inter-ethnic ratios close to 1). The trough plasma concentration after eliapixant 150 mg MD, which was assumed to be relevant to eliapixant efficacy, was comparable across all ethnicity groups. Most AEs reported in the Japanese (eliapixant 75 mg SD, n = 2; eliapixant 150 mg MD, n = 2) and Chinese participants (eliapixant 25 mg SD, n = 7; eliapixant 75 mg SD, n = 6; eliapixant 150 mg SD, n = 7; eliapixant 150 mg MD, n = 9; placebo SD, n = 5; placebo MD, n = 1) were of mild intensity. Higher incidences of AEs in the Chinese population were likely due to differing standards of AE reporting between investigators. CONCLUSION: Eliapixant was well tolerated by Japanese and Chinese participants. The inter-ethnic evaluation demonstrated similar PK characteristics across Japanese, Chinese, and Caucasian participants. REGISTRATION: ClinicalTrials.gov identifier numbers: NCT04265781 and NCT04802343.


Subject(s)
Purinergic P2X Receptor Antagonists , Adult , Humans , Male , Middle Aged , Young Adult , Administration, Oral , Area Under Curve , Dose-Response Relationship, Drug , Double-Blind Method , Healthy Volunteers , Japan , Purinergic P2X Receptor Antagonists/pharmacokinetics , Purinergic P2X Receptor Antagonists/administration & dosage , Purinergic P2X Receptor Antagonists/adverse effects , Single-Blind Method , White People , East Asian People
2.
Br J Clin Pharmacol ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775025

ABSTRACT

AIMS: We report on investigations exploring the P2X3-receptor antagonist filapixant's effect on taste perception and cough-reflex sensitivity and describe its pharmacokinetics, including its CYP3A4-interaction potential. METHODS: In a randomized, placebo-controlled, double-blind study, 3 × 12 healthy men (18-45 years) were assigned (3:1) to filapixant (20, 80 or 250 mg by mouth) or placebo twice daily over 2 weeks. A single dose of midazolam (1 mg), a CYP3A4 substrate, was administered with and without filapixant. Assessments included a taste-strips test, a taste questionnaire, cough challenge with adenosine triphosphate, adverse event reports and standard safety assessments. RESULTS: Taste disturbances were observed mainly in the 250-mg group: six of nine participants (67%) in this group reported hypo- or dysgeusia in the questionnaire; eight participants (89%) reported taste-related adverse events. Five participants (56%) had a decrease in overall taste-strips-test scores ≥2 points (point estimate -1.1 points, 90% confidence interval [-3.3; 1.1]). Cough counts increased with adenosine triphosphate concentration but without major differences between treatments. Filapixant exposure increased proportionally to dose. Co-administration of filapixant had no clinically relevant effect on midazolam pharmacokinetics. Area under the concentration-time curve ratios and 90% confidence intervals were within 80-125%. No serious or severe adverse events were reported. CONCLUSIONS: Overall, filapixant was safe and well tolerated, apart from mild, transient taste disturbances. Such disturbances occurred more frequently than expected based on (in vitro) receptor-selectivity data, suggesting that other factors than P2X3:P2X2/3 selectivity might also play an important role in this context. The cough-challenge test showed no clear treatment effect. Filapixant has no clinically relevant CYP3A4 interaction potential.

3.
Eur J Drug Metab Pharmacokinet ; 49(1): 71-85, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38044419

ABSTRACT

BACKGROUND: Overactive adenosine triphosphate signaling via P2X3 homotrimeric receptors is implicated in multiple conditions. To fully understand the metabolism and elimination pathways of eliapixant, a study was conducted to assess the pharmacokinetics, mass balance, and routes of excretion of a single oral dose of the selective P2X3 receptor antagonist eliapixant, in addition to an in vitro characterization. METHODS: In this single-center open-label non-randomized non-placebo-controlled phase I study, healthy male subjects (n = 6) received a single dose of 50 mg eliapixant blended with 3.7 MBq [14C]eliapixant as a PEG 400-based oral solution. Total radioactivity and metabolites excreted in urine and feces, and pharmacokinetics of total radioactivity, eliapixant, and metabolites in plasma were assessed via liquid scintillation counting and high-performance liquid chromatography-based methods coupled to radiometric and mass spectrometric detection. Metabolite profiles of eliapixant in human in vitro systems and metabolizing enzymes were also investigated. RESULTS: After administration as an oral solution, eliapixant was rapidly absorbed, reaching maximum plasma concentrations within 2 h. Eliapixant was eliminated from plasma with a mean terminal half-life of 48.3 h. Unchanged eliapixant was the predominant component in plasma (72.6% of total radioactivity area under the curve). The remaining percentage of drug-related components in plasma probably represented the sum of many metabolites, detected in trace amounts. Mean recovery of total radioactivity was 97.9% of the administered dose (94.3-99.4%) within 14 days, with 86.3% (84.8-88.1%) excreted via feces and 11.6% (9.5-13.1%) via urine. Excretion of parent drug was minimal in feces (0.7% of dose) and urine (≈ 0.5%). In feces, metabolites formed by oxidation represented > 90% of excreted total radioactivity. The metabolites detected in the in vitro experiments were similar to those identified in vivo. CONCLUSION: Complete recovery of administered eliapixant-related radioactivity was observed in healthy male subjects with predominant excretion via feces. Eliapixant was almost exclusively cleared by oxidative biotransformation (> 90% of dose), with major involvement of cytochrome P450 3A4. Excretion of parent drug was of minor importance (~ 1% of dose). CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov: NCT04487431 (registered 27 July 2020)/EudraCT number: 2020-000519-54 (registered 3 February 2020), NCT02817100 (registered 26 June 2016), NCT03310645 (registered 16 October 2017).


Eliapixant is a drug that acts on structures in the body called P2X3 receptors that are involved in several conditions, including chronic cough, overactive bladder, and endometriosis-related pain. When evaluating a new drug, it is important to know how it is being removed from the body by natural mechanisms. We performed a study in which six healthy male volunteers took a single dose of eliapixant, and we investigated what happened to the drug after it was taken. We measured the amount of eliapixant in the volunteers' blood, urine, and feces, and also measured the compounds formed when eliapixant was broken down naturally by the body ("metabolites"). We also used human cells in the laboratory to investigate how the different metabolites of eliapixant are formed. Almost three-quarters of eliapixant in the blood had not been broken down at all, while the remaining one-quarter had been converted into many different metabolites. A total of 2 weeks after taking eliapixant, almost all of it had been converted to metabolites and eliminated from the body (mostly in feces, but also a small amount in urine). The most important organ for breaking down eliapixant is the liver. The information from this study will help doctors determine whether eliapixant is likely to interfere with other drugs taken simultaneously, and whether patients with liver or kidney problems might take longer than healthy people to remove it from their bodies.


Subject(s)
Metabolic Networks and Pathways , Purinergic P2X Receptor Antagonists , Humans , Male , Chromatography, High Pressure Liquid/methods , Mass Spectrometry , Feces/chemistry , Administration, Oral , Volunteers , Healthy Volunteers
4.
Clin Pharmacol Ther ; 115(5): 1025-1032, 2024 May.
Article in English | MEDLINE | ID: mdl-38105467

ABSTRACT

In the past, rifampicin was well-established as strong index CYP3A inducer in clinical drug-drug interaction (DDI) studies. However, due to identified potentially genotoxic nitrosamine impurities, it should not any longer be used in healthy volunteer studies. Available clinical data suggest carbamazepine as an alternative to rifampicin as strong index CYP3A4 inducer in clinical DDI studies. Further, physiologically-based pharmacokinetic (PBPK) modeling is a tool with increasing importance to support the DDI risk assessment of drugs during drug development. CYP3A4 induction properties and the safety profile of carbamazepine were investigated in two open-label, fixed sequence, crossover clinical pharmacology studies in healthy volunteers using midazolam as a sensitive index CYP3A4 substrate. Carbamazepine was up-titrated from 100 mg twice daily (b.i.d.) to 200 mg b.i.d., and to a final dose of 300 mg b.i.d. for 10 consecutive days. Mean area under plasma concentration-time curve from zero to infinity (AUC(0-∞)) of midazolam consistently decreased by 71.8% (ratio: 0.282, 90% confidence interval (CI): 0.235-0.340) and 67.7% (ratio: 0.323, 90% CI: 0.256-0.407) in study 1 and study 2, respectively. The effect was adequately described by an internally developed PBPK model for carbamazepine which has been made freely available to the scientific community. Further, carbamazepine was safe and well-tolerated in the investigated dosing regimen in healthy participants. The results demonstrated that the presented design is appropriate for the use of carbamazepine as alternative inducer to rifampicin in DDI studies acknowledging its CYP3A4 inductive potency and safety profile.


Subject(s)
Midazolam , Rifampin , Humans , Rifampin/adverse effects , Midazolam/pharmacokinetics , Cytochrome P-450 CYP3A , Drug Interactions , Models, Biological , Carbamazepine/adverse effects , Cytochrome P-450 CYP3A Inhibitors/pharmacology
5.
Respir Res ; 24(1): 109, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37041539

ABSTRACT

BACKGROUND: P2X3 receptor antagonists seem to have a promising potential for treating patients with refractory chronic cough. In this double-blind, randomized, placebo-controlled study, we investigated the efficacy, safety, and tolerability of the novel selective P2X3 receptor antagonist filapixant (BAY1902607) in patients with refractory chronic cough. METHODS: Following a crossover design, 23 patients with refractory chronic cough (age: 60.4 ± 9.1 years) received ascending doses of filapixant in one period (20, 80, 150, and 250 mg, twice daily, 4-days-on/3-days-off) and placebo in the other. The primary efficacy endpoint was the 24-h cough frequency on Day 4 of each dosing step. Further, subjective cough severity and health-related quality of life were assessed. RESULTS: Filapixant at doses ≥ 80 mg significantly reduced cough frequency and severity and improved cough health-related quality of life. Reductions in 24-h cough frequency over placebo ranged from 17% (80 mg dose) to 37% (250 mg dose), reductions over baseline from 23% (80 mg) to 41% (250 mg) (placebo: 6%). Reductions in cough severity ratings on a 100-mm visual analog scale ranged from 8 mm (80 mg) to 21 mm (250 mg). No serious or severe adverse events or adverse events leading to discontinuation of treatment were reported. Taste-related adverse events occurred in 4%, 13%, 43%, and 57% of patients treated with filapixant 20, 80, 150, and 250 mg, respectively, and in 12% treated with placebo. CONCLUSIONS: Filapixant proved to be efficacious, safe, and-apart from the occurrence of taste disturbances, especially at higher dosages-well tolerated during the short therapeutic intervention. Clinical trial registration EudraCT, eudract.ema.europa.eu, 2018-000129-29; ClinicalTrials.gov, NCT03535168.


Subject(s)
Cough , Purinergic P2X Receptor Antagonists , Humans , Middle Aged , Aged , Cough/chemically induced , Quality of Life , Chronic Disease , Double-Blind Method
6.
Eur J Drug Metab Pharmacokinet ; 48(1): 75-87, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36469250

ABSTRACT

BACKGROUND AND OBJECTIVES: The potent, selective P2X3 receptor antagonist eliapixant (BAY 1817080) is under development for conditions characterized by neuronal hypersensitization. As prominent food effects and limited bioavailability in the fasted state were observed with immediate-release eliapixant tablets, a novel formulation was needed. Accordingly, several novel eliapixant formulations were assessed by in vitro and animal studies in a structured way. The most promising of the formulations was then investigated in a phase I study designed to assess its pharmacokinetics, food effect, and bioavailability in healthy volunteers. METHODS: In vitro non-sink dissolution tests were performed with two amorphous solid dispersion (ASD) granule prototypes compared with pure crystalline eliapixant as a surrogate for the immediate-release formulation. Subsequently, the drug exposure of novel eliapixant formulations under fed and fasted conditions in rats and dogs was assessed to confirm improvements in bioavailability versus the suspension-based formulation. A novel Kollidon VA64®-based eliapixant formulation was identified from the preclinical studies and compared with the original tablet formulation in an open-label, partially randomized, threefold, crossover phase I study, in which healthy males received single oral doses (25-400 mg, fasted/fed). Pharmacokinetic parameters, absolute bioavailability (using an intravenous [13C715N]-eliapixant microdose), relative bioavailability (novel versus original formulation), effect of food, and adverse events (AEs) were evaluated. RESULTS: The non-sink dissolution test demonstrated that the two ASD formulations had an improved dissolution rate compared with pure crystalline eliapixant, with a Kollidon VA64-based prototype having the highest dissolution rate. Further testing of this prototype in animal studies confirmed an approximately twofold higher bioavailability compared with the suspension-based formulation. In the phase I study, 30 subjects were randomized. With the novel Kollidon VA64® formulation (400 mg; fasted), area under the concentration-time curve (AUC) and maximum plasma concentration (Cmax) were up to 3.1-fold and 1.7-fold higher, respectively, than with the original formulation (fed). AUC increased dose proportionally between 25 and 100 mg, and less than dose proportionally from 100 to 400 mg. Food had no clinically relevant effect on the novel formulation, with AUC increasing 1.3-fold and Cmax 2.1-2.4-fold (time to maximum concentration was delayed by 1.5-2.25 h). Absolute bioavailability with the novel formulation (100 mg) was 50%. AEs occurred in 57% of patients; most were mild in severity. CONCLUSIONS: The novel eliapixant formulation substantially improved bioavailability compared with immediate-release eliapixant and may be administered with/without food. CLINICAL TRIAL REGISTRATION: Clinicaltrials.gov: NCT03773068 (initial registration: 12 December 2018).


Subject(s)
Purinergic P2X Receptor Antagonists , Male , Animals , Dogs , Rats , Humans , Biological Availability , Healthy Volunteers , Area Under Curve , Therapeutic Equivalency , Cross-Over Studies , Administration, Oral , Tablets
7.
Clin Pharmacokinet ; 61(8): 1143-1156, 2022 08.
Article in English | MEDLINE | ID: mdl-35624408

ABSTRACT

BACKGROUND AND OBJECTIVE: There is no licensed treatment for refractory chronic cough; off-label therapies have limited efficacy and can produce adverse effects. Excessive adenosine triphosphate signaling via P2X3 receptors is implicated in refractory chronic cough, and selective P2X3 receptor antagonists such as eliapixant (BAY 1817080) are under investigation. The objective of the study was to investigate the safety and tolerability of ascending repeated oral doses of eliapixant in healthy volunteers. METHODS: We conducted a repeated-dose, double-blind, randomized, placebo-controlled study in 47 healthy male individuals. Subjects received repeated twice-daily ascending oral doses of eliapixant (10, 50, 200, and 750 mg) or placebo for 2 weeks. The primary outcome was frequency and severity of adverse events. Other outcomes included pharmacokinetics and evaluation of taste disturbances, which have occurred with the less selective P2X3 receptor antagonist gefapixant. RESULTS: Peak plasma concentrations of eliapixant were reached 3-4 h after administration of the first and subsequent doses. With multiple dosing, steady-state plasma concentrations were reached after ~ 6 days, and plasma concentrations predicted to achieve ≥ 80% P2X3 receptor occupancy (the level required for efficacy) were reached at 200 and 750 mg. Increases in plasma concentrations with increasing doses were less than dose proportional. After multiple dosing, mean plasma concentrations of eliapixant showed low peak-trough fluctuations and were similar for 200- and 750-mg doses. Eliapixant was well tolerated with a low incidence of taste-related adverse events. CONCLUSIONS: Eliapixant (200 and 750 mg) produced plasma concentrations that cover the predicted therapeutic threshold over 24 h, with good safety and tolerability. These results enabled eliapixant to progress to clinical trials in patients with refractory chronic cough. CLINICAL TRIAL REGISTRATION: Clinicaltrials.gov: NCT03310645 (initial registration: 16 October, 2017).


There are few effective treatments for patients with a long-term (chronic) cough. It is thought that chronic cough is caused by nerves becoming oversensitive, wrongly causing a cough when there is no need. We tested a new drug called eliapixant in 47 healthy men. Eliapixant reduces the excessive nerve signaling responsible for chronic cough. We looked for side effects of eliapixant and measured how it behaves in the body. In particular we looked for side effects relating to the sense of taste because gefapixant, a similar drug to eliapixant, can affect taste. Participants took one of four eliapixant doses or a placebo twice daily for 2 weeks. The highest levels of eliapixant in the blood were seen 3­4 h after taking the drug, and stable concentrations were seen after about 6 days. At the two highest doses, eliapixant reached concentrations in the body that should be high enough to work in patients with chronic cough. Side effects were generally similar between eliapixant and placebo. Taste-related side effects were mild and went away without needing treatment. The positive results of this study meant that eliapixant could be tested in patients with chronic cough.


Subject(s)
Purinergic P2X Receptor Antagonists , Receptors, Purinergic P2X3 , Chronic Disease , Cough/chemically induced , Cough/drug therapy , Dose-Response Relationship, Drug , Double-Blind Method , Healthy Volunteers , Humans , Male , Purinergic P2X Receptor Antagonists/adverse effects
8.
Clin Pharmacol Drug Dev ; 11(1): 25-33, 2022 01.
Article in English | MEDLINE | ID: mdl-34826362

ABSTRACT

Pilocarpine-induced salivary secretion could serve as a nontherapeutic target engagement biomarker in a clinical setting to test the activity of an M3 positive allosteric modulator (PAM). The potentiating effect on the reactivity of the M3 receptor to the agonistic effect of pilocarpine would support the mechanism of action of an M3 PAM in a variety of therapeutic areas. The aim of this study was to determine the optimal pilocarpine dose needed for evaluation of this potentiating effect. Therefore, the effects of pilocarpine on salivary secretion rate and its pharmacokinetics were explored at single doses of 2.5, 5, and 10 mg of pilocarpine or placebo. The study also explored the test-retest variability of the pilocarpine-induced effects on salivary secretion. Pilocarpine caused a reproducible, dose-related increase in overall and maximum salivary secretion rate, in line with pilocarpine exposure. Oral doses of pilocarpine from 2.5 to 10 mg were safe and well tolerated, consistent with the published safety profile. These results support the use of pilocarpine in single-dose pharmacological challenge studies. The recommended dose for evaluating M3 PAM activity would be between 2.5 and 5 mg, showing a small increase in salivary secretion rate with room for further increase due to PAM activation.


Subject(s)
Biomarkers, Pharmacological , Pilocarpine , Humans , Muscarinic Agonists/pharmacology , Pilocarpine/pharmacology , Receptor, Muscarinic M3 , Salivation
9.
Eur Respir J ; 58(5)2021 11.
Article in English | MEDLINE | ID: mdl-33986030

ABSTRACT

BACKGROUND: ATP acting via P2X3 receptors is an important mediator of refractory chronic cough (RCC). This phase 2a double-blinded crossover study assessed the safety, tolerability and efficacy of eliapixant (BAY 1817080), a selective P2X3 receptor antagonist, in adults with RCC attending specialist centres. METHODS: In period A, patients received placebo for 2 weeks then eliapixant 10 mg for 1 week. In period B, patients received eliapixant 50, 200 and 750 mg twice daily for 1 week per dose level. Patients were randomised 1:1 to period A-B (n=20) or B-A (n=20). The primary efficacy end-point was change in cough frequency assessed over 24 h. The primary safety end-point was frequency and severity of adverse events (AEs). RESULTS: 37 patients completed randomised therapy. Mean cough frequency fell by 17.4% versus baseline with placebo. Eliapixant reduced cough frequency at doses ≥50 mg (reduction versus placebo at 750 mg: 25% (90% CI 11.5-36.5%); p=0.002). Doses ≥50 mg also significantly reduced cough severity. AEs, mostly mild or moderate, were reported in 65% of patients with placebo and 41-49% receiving eliapixant. Cumulative rates of taste-related AEs were 3% with placebo and 5-21% with eliapixant; all were mild. CONCLUSIONS: Selective P2X3 antagonism with eliapixant significantly reduced cough frequency and severity, confirming this as a viable therapeutic pathway for RCC. Taste-related side-effects were lower at therapeutic doses than with the less selective P2X3 antagonist gefapixant. Selective P2X3 antagonism appears to be a novel therapeutic approach for RCC.


Subject(s)
Cough , Purinergic P2X Receptor Antagonists , Adult , Chronic Disease , Cough/drug therapy , Cross-Over Studies , Double-Blind Method , Humans , Receptors, Purinergic P2X3 , Treatment Outcome
10.
Eur J Clin Pharmacol ; 73(4): 409-416, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28064353

ABSTRACT

INTRODUCTION/METHODS: A discussion forum was hosted by the German not-for-profit Association for Applied Human Pharmacology (AGAH e.V.) to critically review key eligibility criteria and stopping rules for clinical trials with healthy subjects, enrolling stakeholders from the pharmaceutical industry, contract research organisations, academia, ethics committees and competent authority. RESULTS: Pivotal eligibility criteria were defined for trials with new investigational medicinal products (IMPs) or with clinically established IMPs. In general, a pulse rate ranging between 50 and 90 beats/min is recommended for first-in-human (FIH) trials, while wider ranges seem acceptable for trials with clinically established IMPs, provided there are no indications of thyroid dysfunction. Hepatic laboratory parameters not to exceed the upper limit of normal (ULN) comprise ALT (alanine aminotransferase) and AST (aspartate aminotransferase) in FIH trials, whereas slight elevations (10% above ULN) seem acceptable in trials with clinically established IMPs without known hepatotoxicity. A normal renal function is required for any clinical trial in healthy subjects. A risk-adapted approach for stopping rules was adopted. Stopping rules for an individual subject are one adverse event of severe intensity or one serious adverse event. In case of a severe adverse event, some stakeholders demand a causal relationship with the IMP (i.e. an adverse reaction). Stopping rules for a cohort are one serious adverse reaction or ≥50% of subjects experiencing any adverse reaction of moderate or severe intensity. CONSEQUENCES: The application of this consensus resulted in a reduction in protocol deficiencies issued by the competent authority.


Subject(s)
Clinical Trials, Phase I as Topic , Consensus , Healthy Volunteers , Blood Pressure , Electrocardiography , Health Status , Humans
11.
J Pharmacol Exp Ther ; 350(1): 181-7, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24817035

ABSTRACT

The histamine H4 receptor (H4R) is a promising target for the treatment of pruritus. A clinical study was conducted to evaluate the safety and efficacy of the H4R antagonist, JNJ 39758979 [(R)-4-(3-amino-pyrrolidin-1-yl)-6-isopropyl-pyrimidin-2-ylamine], on histamine-induced pruritus in healthy subjects. A single oral dose of 600 mg JNJ 39758979, 10 mg cetirizine, or placebo was administered in a randomized, three-period, double-blind, crossover study. Treatment periods were separated by 22-day washout periods. A histamine challenge was administered on day -1 and at 2 and 6 hours postdose on day 1 of each treatment period. The primary efficacy endpoint was the area under the curve (AUC) of pruritus score 0-10 minutes after the histamine challenge. Secondary efficacy endpoints included wheal and flare areas assessed 10 minutes after the histamine challenge. Safety was assessed for all subjects. Of the 24 enrolled subjects, 23 individuals completed the study. One subject withdrew after completing two treatment periods. Due to a carryover effect of JNJ 39758979, only treatment period 1 was used for pruritus-related evaluations. Compared with placebo, the reduction of the AUC of pruritus score was significant for JNJ 39758979 at 2 hours (P = 0.0248) and 6 hours (P = 0.0060), and for cetirizine at 6 hours (P = 0.0417). In all treatment periods, JNJ 39758979 did not demonstrate a significant decrease in wheal or flare at either time point, although a significant reduction was achieved with cetirizine at 2 and 6 hours (P < 0.0001). Adverse eventss reported in >1 patient with JNJ 39758979 were headache (9%) and nausea (13%). In conclusion, JNJ 39758979 was effective in inhibiting histamine-induced pruritus in healthy subjects.


Subject(s)
Histamine Antagonists/therapeutic use , Histamine/adverse effects , Pruritus/chemically induced , Pruritus/drug therapy , Pyrimidines/therapeutic use , Pyrrolidines/therapeutic use , Receptors, G-Protein-Coupled/antagonists & inhibitors , Adolescent , Adult , Cetirizine/therapeutic use , Cross-Over Studies , Double-Blind Method , Healthy Volunteers , Histamine Antagonists/adverse effects , Humans , Male , Middle Aged , Pyrimidines/adverse effects , Pyrrolidines/adverse effects , Receptors, Histamine , Receptors, Histamine H4 , Young Adult
12.
Pain ; 154(11): 2500-2511, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23891896

ABSTRACT

Nerve growth factor (NGF) is involved in the long-term sensitization of nociceptive processing linked to chronic pain. Functional and structural ("sprouting") changes can contribute. Thus, humans report long-lasting hyperalgesia to mechanical and electrical stimulation after intradermal NGF injection and NGF-induced sprouting has been reported to underlie cancer bone pain and visceral pain. Using a human-like animal model we investigated the relationship between the structure and function of unmyelinated porcine nociceptors 3 weeks after intradermal NGF treatment. Axonal and sensory characteristics were studied by in vivo single-fiber electrophysiology and immunohistochemistry. C fibers recorded extracellularly were classified based on mechanical response and activity-dependent slowing (ADS) of conduction velocity. Intraepidermal nerve fiber (IENF) densities were assessed by immunohistochemistry in pigs and in human volunteers using the same NGF model. NGF increased conduction velocity and reduced ADS and propagation failure in mechano-insensitive nociceptors. The proportion of mechano-sensitive C nociceptors within NGF-treated skin areas increased from 45.1% (control) to 71% and their median mechanical thresholds decreased from 40 to 20 mN. After NGF application, the mechanical receptive fields of nociceptors increased from 25 to 43 mm(2). At the structural level, however, IENF density was not increased by NGF. In conclusion, intradermal NGF induces long-lasting axonal and mechanical sensitization in porcine C nociceptors that corresponds to hyperalgesia observed in humans. Sensitization is not accompanied by increased IENF density, suggesting that NGF-induced hyperalgesia might not depend on changes in nerve fiber density but could be linked to the recruitment of previously silent nociceptors.


Subject(s)
Epidermis/drug effects , Epidermis/innervation , Nerve Fibers/drug effects , Nerve Growth Factor/pharmacology , Nociceptors/drug effects , Adult , Animals , Axons/physiology , Calcium Channels/metabolism , Cold Temperature , Electric Stimulation , Female , Fluorescent Antibody Technique , Humans , Male , Mechanoreceptors/physiology , NAV1.7 Voltage-Gated Sodium Channel/metabolism , NAV1.8 Voltage-Gated Sodium Channel/metabolism , Nerve Fibers, Unmyelinated/physiology , Nerve Tissue Proteins/metabolism , Swine , TRPA1 Cation Channel , TRPV Cation Channels/metabolism , Transient Receptor Potential Channels/metabolism , Young Adult
13.
Clin Pharmacol Ther ; 75(1): 49-59, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14749691

ABSTRACT

OBJECTIVES: Recent studies suggest that stimulation of beta-adrenergic receptors results in both endothelium-dependent and endothelium-independent venodilation, but results of former studies are inconsistent. This study was designed to elucidate the underlying mechanisms of isoproterenol (INN, isoprenaline)-induced venodilation by investigation of dorsal hand vein responses. METHODS: In phenylephrine-constricted veins, isoproterenol (2-514 ng/min) was infused with and without oral pretreatment with 1 g acetylsalicylic acid (n = 7) or 5 mg of the selective beta(1)-adrenergic receptor antagonist bisoprolol (n = 7). In addition, isoproterenol was coinfused with the nitric oxide inhibitor N(G)-monomethyl-l-arginine (l-NMMA) (6.3 micromol/min [n = 6]), with selective blockers of calcium (Ca(++))-dependent potassium (K(+)) channels (tetraethylammonium, 300 microg/min [n = 6]) and adenosine triphosphate (ATP)-sensitive K(+) channels (glyburide [INN, glibenclamide], 20 microg/min [n = 6]) or with the cyclic guanosine monophosphate inhibitor methylene blue (13 microg/min [n = 6]). Finally, L-NMMA was coinfused with potassium chloride (20 mmol/L) to inhibit hyperpolarization (n = 6). RESULTS: Isoproterenol induced dose-dependent venodilation to 67.4% +/- 6.8%. Oral pretreatment with bisoprolol (P =.340) or acetylsalicylic acid (P =.760) did not affect isoproterenol-induced venodilation. Coinfusion of isoproterenol and L-NMMA relaxed the veins to the same extent as in the presence of isoproterenol alone. Neither inhibition of ATP-sensitive K(+) channels (P =.196) nor blockade of Ca(++)-dependent K(+) channels (P =.640) modulated isoproterenol-induced venodilation. In contrast, methylene blue reduced the maximum response to isoproterenol by about one third (68.5% +/- 4.3% versus 41.7% +/- 5.5%, P =.001). Infusion of L-NMMA alone raised vein size to 38.8% +/- 6.5%, yielding an L-NMMA-sensitive increase of 20% (P =.001), which was antagonized by coinfusion of potassium chloride to 17.1% +/- 6.7% (P =.02). CONCLUSIONS: Isoproterenol dilates human hand veins exclusively via beta(2)-adrenergic receptors without involvement of endothelium-derived epoprostenol. Although a contribution of endothelium-derived nitric oxide appears unlikely, the venodilating effect of L-NMMA could have obscured the nitric oxide component of isoproterenol. beta(2)-Adrenergic receptor-mediated dilation is mediated in part by cyclic guanosine monophosphate-dependent mechanisms, whereas ATP- and Ca(++)-dependent K(+) channels are not involved, excluding a significant contribution of smooth muscle cell hyperpolarization. In addition, high concentrations of the nitric oxide synthase blocker L-NMMA dilate human hand veins via activation of endothelium-derived hyperpolarizing factors.


Subject(s)
Adrenergic beta-Agonists/pharmacology , Endothelium, Vascular/drug effects , Isoproterenol/pharmacology , Receptors, Adrenergic, beta-2/drug effects , Vasodilation/drug effects , Adrenergic beta-2 Receptor Antagonists , Adrenergic beta-Agonists/administration & dosage , Adult , Aspirin , Bisoprolol , Dose-Response Relationship, Drug , Glyburide , Hand/blood supply , Humans , Isoproterenol/administration & dosage , Male , Methylene Blue , Potassium Chloride , Tetraethylammonium , Veins/drug effects , omega-N-Methylarginine
SELECTION OF CITATIONS
SEARCH DETAIL
...