Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 17(12)2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29257045

ABSTRACT

Conventional pathogen detection methods require trained personnel, specialized laboratories and can take days to provide a result. Thus, portable biosensors with rapid detection response are vital for the current needs for in-loco quality assays. In this work the authors analyze the characteristics of an immunosensor based on the evanescent field in plastic optical fibers with macro curvature by comparing experimental with simulated results. The work studies different shapes of evanescent-wave based fiber optic sensors, adopting a computational modeling to evaluate the probes with the best sensitivity. The simulation showed that for a U-Shaped sensor, the best results can be achieved with a sensor of 980 µm diameter by 5.0 mm in curvature for refractive index sensing, whereas the meander-shaped sensor with 250 µm in diameter with radius of curvature of 1.5 mm, showed better sensitivity for either bacteria and refractive index (RI) sensing. Then, an immunosensor was developed, firstly to measure refractive index and after that, functionalized to detect Escherichia coli. Based on the results with the simulation, we conducted studies with a real sensor for RI measurements and for Escherichia coli detection aiming to establish the best diameter and curvature radius in order to obtain an optimized sensor. On comparing the experimental results with predictions made from the modelling, good agreements were obtained. The simulations performed allowed the evaluation of new geometric configurations of biosensors that can be easily constructed and that promise improved sensitivity.


Subject(s)
Optical Fibers , Biosensing Techniques , Escherichia coli , Fiber Optic Technology , Immunoassay , Plastics
2.
Sci Rep ; 7(1): 2990, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28592813

ABSTRACT

In this paper, we propose a way to simplify the design of microstructured optical fibres with high sensitivity to applied pressure. The use of a capillary fibre with an embedded core allows the exploration of the pressure-induced material birefringence due to the capillary wall displacements and the photoelastic effect. An analytical description of pressure-induced material birefringence is provided, and fibre modal characteristics are explored through numerical simulations. Moreover, a capillary fibre with an embedded core is fabricated and used to probe pressure variations. Even though the embedded-core fibre has a non-optimized structure, measurements showed a pressure sensitivity of (1.04 ± 0.01) nm/bar, which compares well with more complex, specially designed fibre geometries reported in the literature. These results demonstrate that this geometry enables a novel route towards the simplification of microstructured fibre-based pressure sensors.

3.
Opt Express ; 21(6): 6997-7007, 2013 Mar 25.
Article in English | MEDLINE | ID: mdl-23546082

ABSTRACT

The interaction frequencies between longitudinal acoustic waves and fiber Bragg grating are numerically and experimentally assessed. Since the grating modulation depends on the acoustic drive, the combined analysis provides a more efficient operation. In this paper, 3-D finite element and transfer matrix methods allow investigating the electrical, mechanical and optical resonances of an acousto-optical device. The frequency response allows locating the resonances and characterizing their mechanical displacements. Measurements of the grating response under resonant excitation are compared to simulated results. A smaller than <1.5% average difference between simulated-measured resonances indicates that the method is useful for the design and characterization of optical modulators.


Subject(s)
Fiber Optic Technology/instrumentation , Light , Models, Theoretical , Refractometry/instrumentation , Sound , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Scattering, Radiation
4.
Appl Opt ; 51(24): 5941-5, 2012 Aug 20.
Article in English | MEDLINE | ID: mdl-22907026

ABSTRACT

Real-time monitoring of the fabrication process of tapering down a multimode-interference-based fiber structure is presented. The device is composed of a pure silica multimode fiber (MMF) with an initial 125 µm diameter spliced between two single-mode fibers. The process allows a thin MMF with adjustable parameters to obtain a high signal transmittance, arising from constructive interference among the guided modes at the output end of the MMF. Tapered structures with waist diameters as low as 55 µm were easily fabricated without the limitation of fragile splices or difficulty in controlling lateral fiber alignments. The sensing device is shown to be sensitive to the external environment, and a maximum sensitivity of 2946 nm/refractive index unit in the refractive index range of 1.42-1.43 was attained.

5.
Appl Opt ; 51(16): 3236-42, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22695555

ABSTRACT

The proposed sensing device relies on the self-imaging effect that occurs in a pure silica multimode fiber (coreless MMF) section of a single-mode-multimode-single-mode (SMS)-based fiber structure. The influence of the coreless-MMF diameter on the external refractive index (RI) variation permitted the sensing head with the lowest MMF diameter (i.e., 55 µm) to exhibit the maximum sensitivity (2800 nm/RIU). This approach also implied an ultrahigh sensitivity of this fiber device to temperature variations in the liquid RI of 1.43: a maximum sensitivity of -1880 pm/°C was indeed attained. Therefore, the results produced were over 100-fold those of the typical value of approximately 13 pm/°C achieved in air using a similar device. Numerical analysis of an evanescent wave absorption sensor was performed, in order to extend the range of liquids with a detectable RI to above 1.43. The suggested model is an SMS fiber device where a polymer coating, with an RI as low as 1.3, is deposited over the coreless MMF; numerical results are presented pertaining to several polymer thicknesses in terms of external RI variation.

6.
Opt Express ; 19(24): 24687-98, 2011 Nov 21.
Article in English | MEDLINE | ID: mdl-22109496

ABSTRACT

A photonic crystal fiber (PCF) with a section of one of the holes next to the solid core filled with an index-matched liquid is studied. Liquid filling alters the core geometry, which locally comprises the original silica core, the liquid channel and the silica around it. It is demonstrated that when light reaches the filled section, it periodically and efficiently couples to the liquid, via the excitation of a number of modes of the composite core, with coupling lengths ranging from tens to hundreds of microns. The resulting modal-interference-modulated spectrum shows temperature sensitivity as high as 5.35 nm/°C. The proposed waveguide geometry presents itself as an interesting way to pump and/or to probe liquid media within the fiber, combining advantages usually found separately in liquid-filled hollow-core PCFs (high light-liquid overlap) and in solid-core PCFs (low insertion losses). Therefore, pumping and luminescence guiding with a PCF filled with a Rhodamine solution is also demonstrated.


Subject(s)
Fiber Optic Technology/instrumentation , Models, Chemical , Nephelometry and Turbidimetry/methods , Refractometry/methods , Solutions/chemistry , Computer Simulation , Crystallization , Light , Scattering, Radiation
7.
Opt Express ; 18(3): 2842-8, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20174113

ABSTRACT

We present both numerical and experimental studies of an all-fiber device based on the integration of metallic electrodes into photonic crystal fibers (PCF). The device operation consists on applying electrical current to the electrodes which, by Joule effect, expand and squeeze the PCF microstructure in a preferential direction, altering both phase and group birefringence. We investigate the effect of integrating electrodes into the fiber and the dependence of the device sensitivity on the electrode configuration and composition.

SELECTION OF CITATIONS
SEARCH DETAIL