Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cancer Genet Cytogenet ; 196(1): 1-6, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19963129

ABSTRACT

The molecular pathology of meningiomas and shwannomas involve the inactivation of the NF2 gene to generate grade I tumors. Genomic losses at 1p and 14q are observed in both neoplasms, although more frequently in meningiomas. The inactivation of unidentified genes located in these regions appears associated with tumor progression in meningiomas, but no clues to its molecular/clinical meaning are available in schwannomas. Recent microarray gene expression studies have demonstrated the existence of molecular subgroups in both entities. In the present study, we correlated the presence of genomic deletions at 1p, 14q, and 22q with the expression patterns of 96 tumor-related genes obtained by cDNA low-density microarrays in a series of 65 tumors including 42 meningiomas and 23 schwannomas. Two expression pattern groups were identified by cDNA mycroarray analysis when compared to the expression pattern in normal control RNA in both meningiomas and schwannomas, each one with patterns similar and different from the normal control. Meningioma and schwannoma subgroups differed in the expression of 38 and 16 genes, respectively. Using MLPA and microsatellites, we identified genomic losses at 1p, 14q, and 22q at nonrandom frequencies (12.5-69%) in meningiomas and schwannomas. Losses at 22q were almost equally frequent in both molecular expression subgroups in both neoplasms. However, deletions at 1p and 14q accumulated in meningiomas with a gene expression pattern different from the normal pattern, whereas the inverse situation occurred in schwannomas. Those anomalies characterized the schwannomas with expression pattern similar to the normal control. These findings suggest that deletions at 1p and 14q enhance the development of an abnormal tumor-related gene expression pattern in meningiomas, but this fact is not corroborated in schwannomas.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 14 , Chromosomes, Human, Pair 1 , Gene Expression Profiling , Genomics , Meningioma/genetics , Neurilemmoma/genetics , Oligonucleotide Array Sequence Analysis , DNA, Complementary/genetics , Humans
2.
Cancer Genet Cytogenet ; 190(2): 93-6, 2009 Apr 15.
Article in English | MEDLINE | ID: mdl-19380026

ABSTRACT

Identification of the 1p/19q allelic status in gliomas, primarily those with a major oligodendroglial component, has become an excellent molecular complement to tumor histology in order to identify those cases sensitive to chemotherapy. In addition to loss of heterozygosity (LOH), fluorescence in situ hybridization (FISH), or comparative genomic hybridization (CGH), multiplex ligation-dependent probe amplification (MLPA) has been shown to be an alternative methodology to identify deletions of those chromosome arms. We used MLPA to explore the 1p and 19q allelic constitution in a series of 76 gliomas: 41 tumors with a major oligodendroglial component, 34 glioblastomas, and one low-grade astrocytoma. We compared the MLPA findings of the oligodendroglial cases with those previously obtained using LOH in the same samples. Thirty-eight of 41 oligodendrogliomas displayed identical findings by both LOH and MLPA, and losses at either 1p and/or 19q were identified in 12 of 35 (34%) astrocytic tumors. These findings agree with data previously reported comparing MLPA versus FISH or CGH in gliomas and suggest that MLPA can be used in the identification of the 1p/19q allelic deletions on these brain neoplasms.


Subject(s)
Alleles , Brain Neoplasms/genetics , Chromosomes, Human, Pair 19/genetics , Chromosomes, Human, Pair 1/genetics , Glioblastoma/genetics , Loss of Heterozygosity/genetics , Oligodendroglioma/genetics , Brain Neoplasms/pathology , Glioblastoma/pathology , Humans , Nucleic Acid Amplification Techniques/methods
3.
Int J Oncol ; 34(2): 493-504, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19148485

ABSTRACT

Microarray gene expression profiling is a high-throughput system used to identify differentially expressed genes and regulation patterns, and to discover new tumor markers. As the molecular pathogenesis of meningiomas and schwannomas, characterized by NF2 gene alterations, remains unclear and suitable molecular targets need to be identified, we used low density cDNA microarrays to establish expression patterns of 96 cancer-related genes on 23 schwannomas, 42 meningiomas and 3 normal cerebral meninges. We also performed a mutational analysis of the NF2 gene (PCR, dHPLC, Sequencing and MLPA), a search for 22q LOH and an analysis of gene silencing by promoter hypermethylation (MS-MLPA). Results showed a high frequency of NF2 gene mutations (40%), increased 22q LOH as aggressiveness increased, frequent losses and gains by MLPA in benign meningiomas, and gene expression silencing by hypermethylation. Array analysis showed decreased expression of 7 genes in meningiomas. Unsupervised analyses identified 2 molecular subgroups for both meningiomas and schwannomas showing 38 and 20 differentially expressed genes, respectively, and 19 genes differentially expressed between the two tumor types. These findings provide a molecular subgroup classification for meningiomas and schwannomas with possible implications for clinical practice.


Subject(s)
Meningeal Neoplasms/genetics , Meningioma/genetics , Neurilemmoma/genetics , Oligonucleotide Array Sequence Analysis , Adult , Aged , DNA, Complementary/genetics , DNA, Neoplasm/genetics , Female , Gene Deletion , Gene Expression Regulation, Neoplastic , Humans , Male , Meningeal Neoplasms/classification , Meningioma/classification , Microsatellite Repeats/genetics , Middle Aged , Neurilemmoma/classification , Neurofibromatosis 2/genetics
6.
Cancer Genet Cytogenet ; 173(1): 63-7, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17284372

ABSTRACT

Clinical response to Gefitinib (Iressa, ZD1839) has been found to be associated with somatic mutations, primarily of exons 18-21, of the epidermal growth factor receptor gene (EGFR) in non-small cell lung cancer (NSCLC). Evidence of a positive response was also reported recently on a patient with brain metastasis from NSCLC. On the other hand, amplification of EGFR appears to be associated with a poor prognosis. To determine whether EGFR mutations and amplification are involved in the tumorigenesis of brain metastases, we performed polymerase chain reaction/single-strand conformation polymorphism to examine exons 1, 2, and 7-26 of EGFR in a series of 18 brain metastases. The metastases derived from malignant melanoma (three cases), lung carcinoma (six cases), breast carcinoma (three cases), ovarian carcinoma (two cases), and one each from colon, kidney, bladder, and undifferentiated carcinoma. In addition to several sequence polymorphisms, we identified two mutations on E19 consisting of 18-base pair (bp) deletions: 2423-24440del and 2426-2443del. These mutations presented in lesions derived from kidney carcinoma and lung adenocarcinoma. By real-time quantitaive polymerase chain reaction technique, we determined the amplification/overdose status of EGFR by analyzing exons 11 and 25. Amplification (5- to 100-fold) was identified in three tumors, and overdose (low-level gene amplification corresponding to increases of 1- to 5-fold) presented in four additional metastases. These findings suggest that EGFR mutations and polymorphisms are not exclusively present in metastases derived from lung carcinoma. Accordingly, targeting of EGFR to determine molecular alterations of this gene may be useful in the management of patients with brain metastases.


Subject(s)
Brain Neoplasms/secondary , ErbB Receptors/genetics , Mutation , Neoplasms/pathology , Polymerase Chain Reaction/methods , Adult , Aged , Amino Acid Sequence , Base Sequence , Brain Neoplasms/genetics , DNA Mutational Analysis , DNA, Neoplasm/chemistry , DNA, Neoplasm/genetics , Female , Gene Dosage , Humans , Male , Middle Aged , Mutagenesis, Insertional , Neoplasms/genetics , Polymorphism, Genetic , Polymorphism, Single-Stranded Conformational , Sequence Deletion
8.
Int J Oncol ; 30(1): 209-15, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17143531

ABSTRACT

We have studied amplification/gene-dosage and sequence variations of the EGFR gene in 41 oligodendroglial tumours graded according to the WHO classification (21 oligodendrogliomas grade II, 13 oligodendrogliomas grade III and 6 oligoastrocytomas grade II-III), using multiplex ligation-dependent probe amplification (MLPA), real-time quantitative PCR, and PCR/SSCP techniques. To determine gene-dose we studied exons 11 (extracellular domain) and 25 (intracellular domain) in the EGFR gene. Overdose (1- to 5-fold increase) was present in exon 11 in 21 of 41 samples (52.5% of cases) and in exon 25, in 7 of 41 samples (17.5% of cases). Gene amplification > 5-fold increase) was present in exon 11, in 17 of 41 samples (42.5% of cases), and in exon 25 in 6 of 41 samples (15% of cases). Three tumours (two grade II oligodendrogliglioma, one mixed oligoastrocytoma) displayed high level amplifications: > 100 gene copies were identified by both real-time quantitative PCR and MLPA analyses. Gene sequence alterations were identified by PCR/SSCP and sequencing in four cases: two missense mutations: G1051A (Ala351Thr) and G2216A (Arg739Hys); one nonsense mutation: C2934T (Asp978Asp); and an 18 bp deletion in position 2423-2441 of E19. These changes were present only in tumoral DNA, not in the corresponding constitutional patients' DNA. We also found four previously unidentified polymorphic variants: G2025A (Ala675Ala), C2233T (Leu745Leu), C2895T (Treo965Treo) and C3168T (Asp1056Asp), and three previously described polymorphic changes: E12+22 Tright curved arrow A, G1748A (Arg583Lys) and A2547T (Glu849Glu). Our findings demonstrate that mutations and amplification/overdose in the EGFR gene are present in low-grade oligodendroglial tumours, and may contribute to the development of these brain neoplasms.


Subject(s)
Brain Neoplasms/genetics , DNA Mutational Analysis , ErbB Receptors/genetics , Gene Dosage , Oligodendroglioma/genetics , Amino Acid Substitution , Base Sequence , Biopsy , Brain Neoplasms/pathology , Brain Neoplasms/surgery , DNA Primers , Exons , Gene Amplification , Gene Expression Regulation, Neoplastic , Humans , Oligodendroglioma/pathology , Oligodendroglioma/surgery , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Polymorphism, Single-Stranded Conformational , Sequence Deletion
10.
Int J Mol Med ; 16(4): 771-4, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16142420

ABSTRACT

The DAL-1/41B gene (differentially expressed in adenocarcinoma of the lung), located in the chromosome 18p11.3 region, belongs to the protein family 4.1 (membrane-associated proteins), which includes the product of the NF2 gene (merlin), and the proteins, ezrin, radixin, and moesin. DAL-1/4.1B is normally expressed at high levels in the brain, with lower levels in the kidney, intestine, and testis. DAL-1/4.1B is known to suppress growth in meningiomas and can be lost in about 60% of sporadic meningiomas as an early event in tumorigenesis; it is a critical growth regulator in the pathogenesis of neoplastic transformation. The similarity between the DAL-1/4.1B protein and merlin, with their high levels of expression in the brain and their recurrent loss in meningiomas, and the lack of previous DAL-1/4.1B mutational analysis reports initiated this mutational study of DAL-1/4.1B in a series of 83 meningiomas. We found the following sequence variations; Ala555Thr (G1663A in exon 13) and Thr950Lys (C2849A in exon 19) in two cases each, and one case with a 5pb deletion (del taaaa) in intron 18. A polymorphism in exon 14 (C2112T/Thr704Thr, also known as C2166T) was also identified; the tumoral allelic constitutions were heterozygous C/T in 15, homo- or hemizygous C in 67 and hemizygous T in one tumour. The low mutational frequency in our study discounts sequence variations in DAL-1/4.1B as the main mechanism underlying participation of this gene in the neoplastic transformation of meningiomas, and suggests that other inactivating mechanisms, such as epigenetic changes, may participate in DAL1/4.1B silencing.


Subject(s)
Membrane Proteins/genetics , Meningeal Neoplasms/genetics , Meningioma/genetics , Mutation , Tumor Suppressor Proteins/genetics , Alleles , Base Sequence , DNA Mutational Analysis , DNA, Neoplasm/chemistry , DNA, Neoplasm/genetics , Gene Frequency , Genetic Variation , Genotype , Humans , Microfilament Proteins , Mutation, Missense , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Polymorphism, Single-Stranded Conformational , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...