Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Am J Vet Res ; 83(2): 153-161, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34843444

ABSTRACT

OBJECTIVE: To investigate the role of omega-3 polyunsaturated fatty acids (Ω-3)-derived proresolving lipid mediators (PRLM) in the resolution of mild airway inflammation in horses. ANIMALS: 20 horses with mild airway inflammation. PROCEDURES: Horses previously eating hay were fed hay pellets (low Ω-3 content; n = 10) or haylage (high Ω-3 content; 9) for 6 weeks. Dust exposure was measured in the breathing zone with a real-time particulate monitor. Bronchoalveolar lavage (BAL) was performed at baseline, week 3, and week 6. The effect of PRLM on neutrophil apoptosis and efferocytosis was examined in vitro. BAL fluid inflammatory cell proportions, apoptosis of circulating neutrophils, efferocytosis displayed by alveolar macrophages, and plasma lipid concentrations were compared between groups fed low and high amounts of Ω-3 by use of repeated measures of generalized linear models. RESULTS: Dust exposure was significantly higher with hay feeding, compared to haylage and pellets, and equivalent between haylage and pellets. BAL fluid neutrophil proportions decreased significantly in horses fed haylage (baseline, 11.8 ± 2.4%; week 6, 2.5 ± 1.1%) but not pellets (baseline, 12.1 ± 2.3%; week 6, 8.5% ± 1.7%). At week 6, horses eating haylage had significantly lower BAL neutrophil proportions than those eating pellets, and a significantly lower concentration of stearic acid than at baseline. PRLM treatments did not affect neutrophil apoptosis or efferocytosis. CLINICAL RELEVANCE: Despite similar reduction in dust exposure, horses fed haylage displayed greater resolution of airway inflammation than those fed pellets. This improvement was not associated with increased plasma Ω-3 concentrations. Feeding haylage improves airway inflammation beyond that due to reduced dust exposure, though the mechanism remains unclear.


Subject(s)
Horse Diseases , Inflammation , Animals , Bronchoalveolar Lavage Fluid , Dust , Horse Diseases/etiology , Horses , Inflammation/veterinary , Lipids , Neutrophils
2.
Article in English | MEDLINE | ID: mdl-33626396

ABSTRACT

The aqueous extract of fallen leaves from Fridericia chica (Bonpl.) L.G. Lohmann is utilized as a remedy in communities at northern Colombia. Traditional uses include wound healing, gastrointestinal inflammation, leukemia and psoriasis, among others. The aims of this research were to evaluate the potential of the aqueous extract of fallen leaves of F. chica (AEFchica) to inhibit ethoxylated nonylphenol (Tergitol)-induced toxicity in Caenorhabditis elegans; and to identify its main components. The pharmacological properties of AEFchica was evaluated using a Tergitol-induced toxicity model in Caenorhabditis elegans. Lethality, locomotion, reproduction, and DAF-16 nuclear translocation were quantified. The chemical composition of AEFchica was carried out using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. AEFchica induced very little lethality on C. elegans (5.6%) even at high concentrations (10,000 µg/mL). The extract had no effect on locomotion impairing induced by ethoxylated nonylphenol. However, AEFchica (1000 µg/mL) abrogated Tergitol-induced mortality, recovering up to 53.3% of the nematodes from lethality induced by 10 mM Tergitol. Similarly, it also blocked Tergitol-dependent reproduction inhibition (82.1% recovery), as well as DAF-16 nuclear translocation (>95%), suggesting a prominent role on oxidative stress control. The chemical analysis indicated the presence of a great variety of molecules with known antioxidant, metabolic and immune modulator properties, such as hydroxylated methoxy flavones, N-methyl-1-deoxynojirimycin, and rehmaionoside A. In short, the aqueous extract of F. chica protects C. elegans from the deleterious effects of Tergitol on lethality, reproduction and oxidative stress involving DAF-16-mediated pathway. This extract is a promising source of bioactive phytochemicals for multi-target pharmacological purposes.


Subject(s)
Antioxidants , Bignoniaceae/chemistry , Caenorhabditis elegans/drug effects , Plant Extracts , Plant Leaves/chemistry , Poloxalene/toxicity , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Colombia , Locomotion/drug effects , Oxidative Stress/drug effects , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Reproduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...