Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Front Bioeng Biotechnol ; 12: 1356028, 2024.
Article in English | MEDLINE | ID: mdl-38835975

ABSTRACT

The increasing risk of amputation due to diabetic foot ulcer calls for new therapeutic options; for that, we determined the role of IMMUNEPOTENT CRP (ICRP) and its parts in the wound healing process of superficial wounds in diabetic BALB/c mice. A potency test was performed to confirm the batch of ICRP, and then its parts were separated into pellets, supernatants, and exosomes, and another group of exosomes loaded with insulin was added. Viability and scratch healing were assessed in NIH-3T3, HUVEC, and HACAT cell lines. Diabetes was induced with streptozotocin, and wounds were made by dissecting the back skin. Treatments were topically applied, and closure was monitored; inflammatory cytokines in sera were also evaluated by flow cytometry, and histological analysis was performed by Masson's staining and immunohistochemistry for p-AKT, p-FOXO, p-P21, and p-TSC2. ICRP pellets and exosomes increased cellular viability, and exosomes and exosome-insulin accelerated scratch healing in vitro. Exosome-insulin releases insulin constantly over time in vitro. In vivo, treatments accelerated wound closure, and better performance was observed in pellet, exosome, and exosome-insulin treatments. Best collagen expression was induced by ICRP. P-AKT and p-FOXO were overexpressed in healing tissues. Inflammatory cytokines were downregulated by all treatments. In conclusion, IMMUNEPOTENT CRP components, especially exosomes, and the process of encapsulation of exosome-insulin accelerate diabetic wound healing and enhance cellular proliferation, collagen production, and inflammation modulation through the phosphorylation of components of the AKT pathway.

2.
Front Microbiol ; 15: 1376669, 2024.
Article in English | MEDLINE | ID: mdl-38650875

ABSTRACT

Introduction: The emergence of multi-drug-resistant bacteria is one of the main concerns in the health sector worldwide. The conventional strategies for treatment and prophylaxis against microbial infections include the use of antibiotics. However, these drugs are failing due to the increasing antimicrobial resistance. The unavailability of effective antibiotics highlights the need to discover effective alternatives to combat bacterial infections. One option is the use of metallic nanoparticles, which are toxic to some microorganisms due to their nanometric size. Methods: In this study we (1) synthesize and characterize bismuth and silver nanoparticles, (2) evaluate the antibacterial activity of NPs against Staphylococcus aureus and Escherichia coli in several infection models (in vivo models: infected wound and sepsis and in vitro model: mastitis), and we (3) determine the cytotoxic effect on several cell lines representative of the skin tissue. Results and discussion: We obtained bimetallic nanoparticles of bismuth and silver in a stable aqueous solution from a single reaction by chemical synthesis. These nanoparticles show antibacterial activity on S. aureus and E. coli in vitro without cytotoxic effects on fibroblast, endothelial vascular, and mammary epithelium cell lines. In an infected-wound mice model, antibacterial effect was observed, without effect on in vitro mastitis and sepsis models.

3.
Toxins (Basel) ; 15(9)2023 08 24.
Article in English | MEDLINE | ID: mdl-37755945

ABSTRACT

Aflatoxins can cause intoxication and poisoning in animals and humans. Among these molecules, aflatoxin B1 (AFB1) is the most dangerous because of its carcinogenic and mutagenic properties. To mitigate these effects, clay adsorbents are commonly included in the diet of animals to adsorb the carcinogens and prevent their absorption in the gastrointestinal tract. In this study, four clays, three smectites (C-1, C-2, and C-3), and one zeolite (C-4), were compared as adsorbents of AFB1 and trace inorganic nutrients using an in vitro gastrointestinal model for poultry. Characterization of the clays using Fourier transform infrared spectroscopy revealed characteristic bands of smectites in C-1, C-2, and C-3 (stretching vibrations of Si-O, Al-O-Si, and Si-O-Si). The C-4 presented bands related to the bending vibration of structural units (Si-O-Si and Al-O-Si). X-ray diffraction analysis showed that C-1 is a montmorillonite, C-2 is a beidellite, C-3 is a beidellite-Ca-montmorillonite, and C-4 is a clinoptilolite. The elemental compositions of the clays showed alumina, silica, iron, calcium, and sodium contents. The cation exchange capacity was higher in C-3 clay (60.2 cmol(+)/kg) in contrast with the other clays. The AFB1 adsorption of C-1 was the highest (98%; p ˂ 0.001), followed by C-2 (94%). However, all the clays also sequestered trace inorganic nutrients (Fe, Mn, Zn, and Se). Both smectites, montmorillonite and beidellite, were the most suitable for use as adsorbents of AFB1.


Subject(s)
Trace Elements , Animals , Humans , Adsorption , Aflatoxin B1 , Clay , Bentonite , Poultry , Carcinogens
4.
Int J Mol Sci ; 24(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37239831

ABSTRACT

Immunogenic cell death (ICD) is a type of cell death capable of stimulating immunity against cancer through danger signals that lead to an adaptive immune response. Silver nanoparticles (AgNPs) have been shown to have a cytotoxic effect on cancer cells; however, their mechanism of action is not fully understood. The present study synthesized, characterized, and evaluated the cytotoxic effect of beta-D-glucose-reduced AgNPs (AgNPs-G) against breast cancer (BC) cells in vitro; and assess the immunogenicity of cell death in vitro and in vivo. The results showed that AgNPs-G induce cell death in a dose-dependent manner on BC cell lines. In addition, AgNPs show antiproliferative effects by interfering with the cell cycle. Regarding the detection of damage-associated molecular patterns (DAMPs), it was found that treatment with AgNPs-G induces calreticulin exposure and the release of HSP70, HSP90, HMGB1, and ATP. In vivo, prophylactic vaccination did not prevent tumor establishment; however, tumor weight was significantly lower in AgNPs-G vaccinated mice, while the survival rate increased. In conclusion, we have developed a new method for the synthesis of AgNPs-G, with in vitro antitumor cytotoxic activity on BC cells, accompanied by the release of DAMPs. In vivo, immunization with AgNPs-G failed to induce a complete immune response in mice. Consequently, additional studies are needed to elucidate the mechanism of cell death that leads to the design of strategies and combinations with clinical efficacy.


Subject(s)
Antineoplastic Agents , Metal Nanoparticles , Neoplasms , Mice , Animals , Silver/pharmacology , Glucose , Cell Death , Antineoplastic Agents/pharmacology
5.
Int J Mol Sci ; 24(10)2023 May 18.
Article in English | MEDLINE | ID: mdl-37240318

ABSTRACT

Chronic wounds in diabetic patients can take months or years to heal, representing a great cost for the healthcare sector and impacts on patients' lifestyles. Therefore, new effective treatment alternatives are needed to accelerate the healing process. Exosomes are nanovesicles involved in the modulation of signaling pathways that can be produced by any cell and can exert functions similar to the cell of origin. For this reason, IMMUNEPOTENT CRP, which is a bovine spleen leukocyte extract, was analyzed to identify the proteins present and is proposed as a source of exosomes. The exosomes were isolated through ultracentrifugation and shape-size, characterized by atomic force microscopy. The protein content in IMMUNEPOTENT CRP was characterized by EV-trap coupled to liquid chromatography. The in silico analyses for biological pathways, tissue specificity, and transcription factor inducement were performed in GOrilla ontology, Panther ontology, Metascape, and Reactome. It was observed that IMMUNEPOTENT CRP contains diverse peptides. The peptide-containing exosomes had an average size of 60 nm, and exomeres of 30 nm. They had biological activity capable of modulating the wound healing process, through inflammation modulation and the activation of signaling pathways such as PIP3-AKT, as well as other pathways activated by FOXE genes related to specificity in the skin tissue.


Subject(s)
Exosomes , Humans , Animals , Cattle , Exosomes/metabolism , Wound Healing/physiology , Skin/metabolism , Gene Expression Regulation , Transcription Factors/metabolism
6.
PeerJ ; 11: e14981, 2023.
Article in English | MEDLINE | ID: mdl-36968001

ABSTRACT

Background: Emulsions have been widely used as immunological adjuvants. But the use of materials derived from plants such as cottonseed oil, alpha-tocopherol, or minerals such as zinc, as well as their use at the nanometric scale has been little explored. In this study, we develop a new miniemulsion and evaluated its antioxidant and phagocytic capacity, as well as parameters related to immune response stimulation by cytokine expression and antibodies production in a mice model. Methods: Formulated CN (cottonseed oil miniemulsion) and CNZ (cottonseed oil miniemulsion whit zinc oxide nanoparticles) miniemulsions were characterized by scanning electronic microscopy SEM, DLS and FT-IR. In murine macrophages, splenocytes and thymocytes primary cultures safety and cytotoxicity were determined by MTT. In macrophages the antioxidant and phagocytic capacity was evaluated. In BALB/c mice, the stimulation of the immune system was determined by the expression of cytokines and the production of antibodies. Results: The CN and CNZ presented stability for 90 days. Immediately after preparation, the CN presented a higher particle size (543.1 nm) than CNZ (320 nm). FT-IR demonstrated the correct nanoparticle synthesis by the absence of sulfate groups. CN and CNZ (1.25 to 10 µL/mL) had no toxic effect on macrophages (p = 0.108), splenocytes (p = 0.413), and thymocytes (p = 0.923). All CN and CNZ doses tested induced nitric oxide and antioxidants production in dose dependent manner when compared with control. CN-ovalbumin and CNZ-ovalbumin treatments in femoral subcutaneous tissue area showed inflammation with higher leukocyte infiltration compared with FCA. The intraperitoneal administration with CN, CNZ, and FCA showed a higher total intraperitoneal cells recruitment (CD14+) after 24 h of inoculation than control (p = 0.0001). CN and CNZ increased the phagocyte capacity with respect to untreated macrophages in the Candida albicans-phagocytosis assay. The evaluation of residual CFU indicated that only CN significantly decreased (p = 0.004) this value at 3 h. By other side, only CN increased (p = 0.002) the nitric oxide production. CNZ stimulated a major INFγ secretion compared with FCA at day 7. A major IL-2 secretion was observed at days 7 and 14, stimulated with CN and CNZ. Both miniemulsions did not affect the antibody isotypes production (IgG1, IgG2a, IgG3, IgA and IgM) at days 7, 14, 28, and 42. CN induced a significant IgG production against OVA, but lesser than FCA. Conclusions: The two new miniemulsions with adjuvant and antioxidant capacity, were capable of generating leukocyte infiltration and increased cytokines and antibodies production.


Subject(s)
Zinc Oxide , Animals , Mice , Zinc Oxide/pharmacology , alpha-Tocopherol/pharmacology , Cottonseed Oil , Ovalbumin , Antioxidants/pharmacology , Nitric Oxide , Spectroscopy, Fourier Transform Infrared , Adjuvants, Immunologic/pharmacology , Cytokines , Immunoglobulin G , Adjuvants, Pharmaceutic
7.
Front Pharmacol ; 14: 1332439, 2023.
Article in English | MEDLINE | ID: mdl-38333224

ABSTRACT

Introduction: Neoadjuvant therapy constitutes a valuable modality for diminishing tumor volume prior to surgical resection. Nonetheless, its application encounters limitations in the context of recurrent tumors, which manifest resistance to conventional treatments. Silver nanoparticles (AgNPs) have emerged as a promising alternative for cancer treatment owing to their cytotoxic effects. Methods: Cellular viability was assessed by Alamar blue assay in 4T1 breast cancer cell line. Silver biodistribution was detected by an inductively coupled plasma optical emission spectrometer in an in vivo mice model. For neoadjuvant evaluation, mice were randomized and treated intratumoral with AgNPs-G or intraperitoneally with doxorubicin (DOX) as a control. Recurrence was determined after 170 days by counting lung metastatic nodules (dyed with Bouin solution) with histological confirmation by H&E. Masson's stain, Ki67 immunohistochemistry, and a TUNEL assay were performed in lungs from treated mice. Results: AgNPs-G reduced 4T1 cell viability and in an ex vivo assay the AgNPs-G decreased the tumor cell viability. After intravenous administration of AgNPs-G were detected in different organs. After intratumor administration, AgNPs-G are retained. The AgNPs-G treatment significantly reduced tumor volume before its surgical resection. AgNPs-G reduced the development of lung metastatic nodules and the expression of Ki67. TUNEL assay indicated that AgNPs-G didn't induce apoptosis. Conclusions: We concluded that intratumor administration of AgNPs-G reduced tumor volume before surgical resection, alongside a reduction in lung metastatic nodules, and Ki67 expression. These findings provide valuable insights into the AgNPs-G potential for intratumor and neoadjuvant cancer therapies. However, further research is needed to explore their full potential and optimize their use in clinical settings.

8.
Res Vet Sci ; 152: 364-371, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36108549

ABSTRACT

Breast cancer is the most frequent type of cancer worldwide and triple negative breast cancer is a particularly aggressive subtype. Novel therapies for the treatment of cancer patients focus on the remodeling of the tumor microenvironment (TME). Orthotopic and heterotopic syngeneic mice are the most common model used to study the TME in preclinical research. Despite this, there are no published studies that address the differences between orthotopic and heterotopic murine breast cancer models at the TME level. In this report we compared proliferation, immune cell infiltrates, extracellular matrix, vascular density, and response to chemotherapy between the mammary fat pad orthotopic model, and the air pouch heterotopic model. Our study shows that the orthotopic tumors form more metastasis, however, the heterotopic tumors grow larger, have a higher FOXP3 cell infiltrate, and resemble more accurately the breast cancer TME. Our findings show that both models are very similar, there are however some differences that should be considered in the experimental design of preclinical studies.


Subject(s)
Disease Models, Animal , Triple Negative Breast Neoplasms , Animals , Mice , Cell Line, Tumor , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/veterinary , Tumor Microenvironment
9.
Front Vet Sci ; 9: 972185, 2022.
Article in English | MEDLINE | ID: mdl-36061122

ABSTRACT

The canine transmissible venereal tumor (CTVT) is the most common malignity in dogs. Because there are reports that this tumor is resistant to vincristine sulfate, the chemotherapeutic options are scarce, and the development of new therapeutic approaches is necessary. In this study, we evaluated the cytotoxic activity of vincristine, doxorubicin, temozolomide, panobinostat, toceranib, gemcitabine, cisplatin, fluorouracil, cyclophosphamide, and methotrexate on a CTVT cell line, determining that all drugs decreased the viability in a dose-dependent manner. Furthermore, they inhibit cellular migration in a time- and drug-dependent manner, as evaluated by the wound healing assay. On the other hand, vincristine, panobinostat, gemcitabine, toceranib, cyclophosphamide, and methotrexate increased the percentage of cells in the subG1 phase, and doxorubicin, temozolomide, gemcitabine, toceranib, and methotrexate decreased the percentage of cells in the synthesis phase. To efficientize the use of vincristine, only toceranib increased the cytotoxic effect of vincristine in a synergistic manner. Our results confirm the use of vincristine as the gold standard for CTVT treatment as monotherapy and suggest the use of a combinatorial and sequential treatment with toceranib.

10.
IEEE Trans Nanobioscience ; 21(1): 125-134, 2022 01.
Article in English | MEDLINE | ID: mdl-34428148

ABSTRACT

A series of ten α , ß -unsaturated benzotriazolyl-1,3,4-oxadiazole derivatives was synthesized and all compounds were evaluated in vitro against three breast cancer cell lines (MCF-7, MDA-MB-231 and 4T1) at different concentrations (0.1, 0.5, 1, 2, 3, 4 and 5 mg/mL). The results showed that compounds 6a, 6c, 6d, 6f, 6g, and 6i displayed acceptable anticancer activity, where compound 6f was the most active on the three cell lines (IC50 = 0.80, 0.07, and 0.30 mg/mL, respectively). Regarding the cytotoxicity assay, the compounds exhibited modest toxicity on murine splenocytes and peripheral human blood cells at the highest concentration tested (5 mg/mL). Compound 6f was further evaluated at different concentrations showing moderate cytotoxicity at the 5 mg/mL concentration and negligible cytotoxicity at the minimum concentration evaluated (0.05 mg/mL). Finally, the compounds 6a, 6c, 6d, 6f, 6g, 6i, and 6j were evaluated as fluorescence markers due to their ability to be internalized into MCF-7 cells.


Subject(s)
Antineoplastic Agents , Oxadiazoles , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , MCF-7 Cells , Mice , Oxadiazoles/pharmacology , Structure-Activity Relationship
11.
In Vivo ; 35(6): 3137-3146, 2021.
Article in English | MEDLINE | ID: mdl-34697144

ABSTRACT

BACKGROUND/AIM: Wilms' tumor 1 (WT1) is involved in the development of the urogenital system and is expressed in podocytes throughout life. Inflammation of renal glomeruli causes renal damage-induced nephrotic syndrome and steroid-resistant nephrotic syndrome have mutations in the WT1 gene. The aim of this work was to determine if the inflammatory process modulates the expression and localization of WT1 in podocytes that cause kidney damage using lipopolysaccharide (LPS)-treated mice as a sepsis model. MATERIALS AND METHODS: In investigation of renal damage, proteinuria and histology were analyzed. WT1 modulation was analyzed by indirect immunofluorescence, immunohistochemistry and western blot assays, and proinflammatory cytokines were analyzed by quantitative polymerase chain reaction assay. RESULTS: WT1 expression decreased most at 24 and 36 h after the induction of inflammation and phosphorylated WT1 was mainly localized in the cytoplasm, reduced nephrin mRNA expression and increased mRNA expression of tumor necrosis factor α and interleukin 1ß. CONCLUSION: These results indicate that the immune system plays an important role in the modulation of WT1, leading to kidney damage.


Subject(s)
Podocytes , Animals , Blotting, Western , Immunohistochemistry , Kidney , Mice , WT1 Proteins/genetics
12.
Trop Med Infect Dis ; 6(3)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34287376

ABSTRACT

Rabies is a fatal viral infection that causes enc ephalitis in warm-blooded animals, including humans. Dog-transmitted rabies is considered eradicated in Mexico; however, rabies is not being tested in livestock with neurological symptoms (one of the main manifestations of rabies disease). In this case report, we describe a rabies case in a white-tailed deer in the Santo Domingo ranch, in Catazajá, Chiapas, Mexico, where white-tailed deer are kept under captivity, and are meant for human consumption. This is the first report of a rabies case in white-tailed deer in Mexico. We also describe the challenges to obtain a rabies diagnosis and the lack of public health policies to ensure containment of the disease, as well as the lack of awareness among farmers in the area. One single confirmed case of rabies indicates that more animals are affected by the disease. The risk for human health and economical losses will remain unknown until rabies tests are routinely performed in animals that present neurological symptoms.

13.
EXCLI J ; 20: 614-624, 2021.
Article in English | MEDLINE | ID: mdl-33883986

ABSTRACT

Glioblastoma multiforme is a malignant neoplasm of the brain with poor prognosis. The first-line drug against glioblastoma is the alkylating agent temozolamide (TMZ); unfortunately, treatment resistance and tumor re-incidence are common. In some cases, immunogenic cell death (ICD) inducers can decrease treatment resistance and tumor recurrence by stimulating an antitumor specific immune response. Not all ICD inducers, however, are suitable for glioma patients because of the low permeability of the blood-brain barrier (BBB). Panobinostat (PAN), a histone deacetylase inhibitor and Lophophora williamsii (LW) extract can pass through the BBB and have antitumor properties. The aim of this study is to evaluate the cytotoxic potential of TMZ, PAN and LW extract against the glioma C6 cell line, and its role in the release of damage-associated molecular patterns (DAMPs), which is a hallmark of ICD. Our results indicate that all treatments induce cellular death in a time- and concentration-dependent manner, and that PAN and LW extract induce apoptosis, whereas TMZ induces apoptosis and necrosis. Also, that some of the treatments and their sequential administration induce the release of DAMPs. Furthermore, in a rat glioma model, we observed that all treatments decreased tumor volume, but the in vivo cell death mechanism was not ICD. Our findings indicate that TMZ, PAN, and LW combination have a cytotoxic effect against glioma cells but do not induce ICD.

14.
Biomed Pharmacother ; 126: 110062, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32172064

ABSTRACT

In 1889, Steven Paget postulated the theory that cancer cells require a permissive environment to grow. This permissive environment is known as the tumor microenvironment (TME) and nowadays it is evident that the TME is involved in the progression and response to therapy of solid cancer tumors. Triple-negative breast cancer is one of the most lethal types of cancer for women worldwide and chemotherapy remains the standard treatment for these patients. IMMUNEPOTENT CRP is a bovine dialyzable leukocyte extract with immunomodulatory and antitumor properties. The combination of chemotherapy and IMMUNEPOTENT CRP improves clinical parameters of breast cancer patients. In the current study, we aimed to evaluate the antitumor effect of doxorubicin/cyclophosphamide chemotherapy plus IMMUNEPOTENT CRP and its impact over the tumor microenvironment in a triple-negative breast cancer murine model. We evaluated CD8+, CD4+, T regulatory cells, memory T cells, myeloid-derived suppressor cells, CD71+, innate effector cells and molecules such as α-SMA, VEGF, CTLA-4, PD-L1, Gal-3, IDO, IL-2, IFN-γ, IL-12, IL-6, MCP-1, and IL-10 as part of the components of the TME. Doxorubicin/cyclophosphamide + IMMUNEPOTENT CRP decreased tumor volume, prolonged survival, increased infiltrating and systemic CD8+ T cells and decreased tumor suppressor molecules (such as PD-L1, Gal-3, and IL-10 among others). In conclusion, we suggest that IMMUNEPOTENT CRP act as a modifier of the TME and the immune response, potentiating or prolonging anti-tumor effects of doxorubicin/cyclophosphamide in a triple-negative breast cancer murine model.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Extracts/therapeutic use , Immunologic Factors/therapeutic use , Mammary Neoplasms, Experimental/drug therapy , Triple Negative Breast Neoplasms/drug therapy , Tumor Microenvironment/drug effects , Animals , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Cattle , Cell Extracts/administration & dosage , Cell Extracts/immunology , Cell Line, Tumor , Cyclophosphamide/administration & dosage , Cyclophosphamide/therapeutic use , Doxorubicin/administration & dosage , Doxorubicin/therapeutic use , Female , Humans , Immunologic Factors/administration & dosage , Immunologic Factors/immunology , Leukocytes/immunology , Mammary Neoplasms, Experimental/immunology , Mice, Inbred BALB C , Triple Negative Breast Neoplasms/immunology , Tumor Microenvironment/immunology
15.
Mol Immunol ; 114: 278-288, 2019 10.
Article in English | MEDLINE | ID: mdl-31419704

ABSTRACT

Protease-activated receptors (PARs) have been described in a wide diversity of vertebrate cells, including human immune cells. Macrophages are pivotal cells in the host-pathogen interaction and their polarization in M1 or M2 cells has been described as a new central paradigm in the immune response to pathogens. In this context, we explored the involvement of PAR activation by serine proteases on M1/M2 macrophage differentiation and their impact on the Th1/Th2 cytokine profile in response to Mycobacterium tuberculosis antigen. Our results demonstrate that the serine proteases, thrombin and trypsin, induce interleukin (IL)-4 release from human monocytes, together with upregulation of the macrophage mannose receptor (CD206) in the same way that alternative M2a differentiated cells with M-CSF/IL-4. Protease stimulation of monocytes in the presence of PAR-1 (SCH-79797) or PAR-2 (FSLLRY-NH2) antagonists abolished IL-4 release from monocytes, whereas the use of the peptide agonist for PAR-1 (SFLLRNPNDKYEPF-NH2) or PAR-2 (SLIGKV-NH2) induced the secretion of IL-4 at a level comparable to thrombin or trypsin. When these protease-induced M2 macrophages from healthy human PPD + donors were co-cultured with autologous lymphocyte population in the presence of Mycobacterium tuberculosis antigen, we found a consistent inhibition of IFN-γ/IL-12 release together with persistent IL-4 expression, in contrast to the expected Th1 profile obtained with M2a macrophages. To our knowledge, this is the first observation that proteolytic activation of PAR1/2 receptors in monocytes induces M2-like macrophages with impaired plasticity and their implication in the driving of the Th1/Th2 cytokine profile.


Subject(s)
Cell Polarity/physiology , Macrophages/metabolism , Macrophages/physiology , Receptor, PAR-1/metabolism , Receptor, PAR-2/metabolism , Cell Differentiation/physiology , Cell Plasticity , Cells, Cultured , Cytokines/metabolism , Humans , Interleukin-4/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/physiology , Macrophage Activation/physiology , Macrophage Colony-Stimulating Factor/metabolism , Monocytes/metabolism , Monocytes/physiology , Mycobacterium tuberculosis/pathogenicity , Trypsin/metabolism , Tuberculosis/metabolism , Up-Regulation/physiology
16.
Biomed Res Int ; 2019: 8560527, 2019.
Article in English | MEDLINE | ID: mdl-31275985

ABSTRACT

Cuphea aequipetala (C. aequipetala) has been used in Mexican traditional medicine since prehispanic times to treat tumors. In this paper, we evaluated the antiproliferative and apoptotic effect of the methanolic and aqueous extracts of C. aequipetala on several cancer cell lines including the B16F10 cell line of murine melanoma and carried a murine model assay. In vitro assay analyzed the effect in the cellular cycle and several indicators of apoptosis, such as the caspase-3 activity, DNA fragmentation, phosphatidylserine exposure (Annexin-V), and induction of cell membrane permeabilization (propidium iodide) in the B16F10 cells. In vivo, groups of C57BL/6 female mice were subcutaneously injected with 5x105 B16F10 cells and treated with 25 mg/mL of C. aequipetala extracts via oral. Aqueous and methanolic extracts showed a cytotoxic effect in MCF-7, HepG2, and B16F10 cell lines. The methanolic extract showed more antiproliferative effect with less concentration, and for this reason, the in vitro experiments were only continued with it. This extract was able to induce accumulation of cells on G1 phase of the cell cycle; moreover, it was able to induce DNA fragmentation and increase the activity of caspase-3 in B16F10 cells. On the other hand, in the murine model of melanoma, the aqueous extract showed a greater reduction of tumor size in comparison with the methanolic extract, showing an 80% reduction versus one of around 31%, both compared with the untreated control, indicating a better antitumor effect of C. aequipetala aqueous extract via oral administration. In conclusion, the in vitro data showed that both C. aequipetala extracts were able to induce cytotoxicity through the apoptosis pathway in B16F10 cells, and in vivo, the oral administration of aqueous extract reduces the melanoma tumoral mass, suggesting an important antitumoral effect and the perspective to search for effector molecules involved in it.


Subject(s)
Cuphea/chemistry , Melanoma, Experimental/drug therapy , Plant Extracts/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Shape/drug effects , Female , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Melanoma, Experimental/pathology , Methanol/chemistry , Mice, Inbred C57BL , Plant Extracts/pharmacology , Water/chemistry
17.
In Vivo ; 33(3): 777-785, 2019.
Article in English | MEDLINE | ID: mdl-31028197

ABSTRACT

BACKGROUND/AIM: High expression level of Wilm's tumor gene (WT1) in several types of tumors appears to confer disruption of apoptosis and resistance to chemotherapeutic drugs, and correlate with poor outcome. The aim of this work was to determine if down-regulation of WT1 expression results in decreased cell proliferation and the increased action of different types of drugs, both in vitro in B16F10 cells, and in vivo in C57BL/6 mice. MATERIALS AND METHODS: Inhibition of cell proliferation by short hairpin RNA against WT1 (shRNA-WT1), cisplatin, and gemcitabine in B16F10 cells in vitro was determined by the MTT assay and analysis of clonogenic survival. The apoptosis rate was determined by flow cytometry for annexin-V- fluorescein isothiocyante and propidium iodide. RESULTS: Compared to treatment with shRNA-WT1 alone, treatment with shRNA-WT1 in combination with drugs had a synergistic inhibitory effect on B16F10 cell proliferation, particularly for the combination of cisplatin and gemcitabine at their 25% cytotoxic concentrations in vitro. Furthermore, mice treated with shRNA-WT1 in combination with cisplatin and gemcitabine were protected in the same way as those treated with the drugs alone, but were in better physical condition. CONCLUSION: Decreased WT1 expression induces cell death and potentiates the action of anticancer drugs by inducing synergistic effects both in vitro and in vivo, which may be an attractive strategy in lung cancer therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Deoxycytidine/analogs & derivatives , Lung Neoplasms/genetics , Lung Neoplasms/secondary , RNA, Small Interfering/genetics , WT1 Proteins/genetics , Animals , Apoptosis/drug effects , Apoptosis/genetics , Deoxycytidine/pharmacology , Female , Flow Cytometry , Gene Expression , Gene Silencing , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Melanoma, Experimental , Mice , Tumor Burden , WT1 Proteins/metabolism , Gemcitabine
18.
Nanomaterials (Basel) ; 9(1)2019 Jan 08.
Article in English | MEDLINE | ID: mdl-30625974

ABSTRACT

The development of new nanomaterials to promote wound healing is rising, because of their topical administration and easy functionalization with molecules that can improve and accelerate the process of healing. A nanocomposite of gold nanoparticles (AuNPs) functionalized with calreticulin was synthetized and evaluated. The ability of the nanocomposite to promote proliferation and migration was determined in vitro, and in vivo wound healing was evaluated using a mice model of diabetes established with streptozotocin (STZ). In vitro, the nanocomposite not affect the cell viability and the expression of proliferating cell nuclear antigen (PCNA). Moreover, the nanocomposite promotes the clonogenicity of keratinocytes, endothelial cells, and fibroblasts, and accelerates fibroblast migration. In vivo, mice treated with the nanocomposite presented significantly faster wound healing. The histological evaluation showed re-epithelization and the formation of granular tissue, as well as an increase of collagen deposition. Therefore, these results confirm the utility of AuNPs⁻calreticulin nanocomposites as potential treatment for wound healing of diabetic ulcers.

19.
Immunopharmacol Immunotoxicol ; 41(1): 48-54, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30334465

ABSTRACT

Context: Exosomes secreted by tumor cells are a good source of cellular components that stimulate the immune response, such as alarmins (mRNA, tetraspanins (CD9, CD63, CD81), heat-shock proteins, major histocompatibility complex class I molecules) and tumor-associated antigens. These properties permit to pulsed dendritic cells in the immunotherapy for many cancers types. The aim of this study was to demonstrate the use of exosomes derived from canine transmissible venereal tumor (CTVT) as an antigen to pulsed dendritic cells and its administration in dogs with CTVT as treatment against this disease. Material and methods: From primary culture of CTVT cells the exosomes were isolated and characterized by scanning electron microscopy assay, dot blot and protein quantification. The monocytes of each patient were differentiated to dendritic cells (DC) and pulsed with CTVT exosomes (CTVTE). Phagocytosis, tumor size, populations of lymphocytes and IFN-c levels were evaluated. Results: The CTVTE showed a size around 90 nm. CD81, CD63, CD9 and Hsp70 were expressed. Monocytes showed an expression of 85.71% for CD14+, 12.3% for CD80+, 0.1% for CD83+ and 0.8% for DLA-II. In DC 5.1% for CD14+, 86.7% for CD80+, 90.1% for CD83+ and 92.6% for DLA-II and a phagocytosis of 63% was obtained by FITC Dextran test. No side effects were observed in the experimental groups with our therapy. Tumor regression was of 100% at the seventh week, as well as an increase in the level of IFN-γ (142 pg/ml), and CD4+ (28%) and CD8+ (34%) cell percentage. Discusion and conclusion: These results have shown that DC pulsed with tumor exosomes induce regression of the TVT in dogs.


Subject(s)
Cancer Vaccines/immunology , Dendritic Cells/immunology , Dog Diseases/therapy , Exosomes/immunology , Immunotherapy/methods , Venereal Tumors, Veterinary/therapy , Animals , Antigens, Neoplasm/immunology , Cancer Vaccines/administration & dosage , Cell Differentiation , Disease Models, Animal , Dog Diseases/immunology , Dog Diseases/pathology , Dogs , Female , Immunotherapy/veterinary , Monocytes/cytology , Monocytes/immunology , Tumor Cells, Cultured , Venereal Tumors, Veterinary/immunology , Venereal Tumors, Veterinary/pathology
20.
Immunopharmacol Immunotoxicol ; 40(5): 437-443, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30507311

ABSTRACT

OBJECTIVE: The aim of the present study was to evaluate the therapeutic potential of autologous DCs loaded with whole tumor cell lysate of CTVT generated under a simplified and rapid procedure in vitro production process, in a vulvar submucosal model of CTVT in dogs. MATERIALS AND METHODS: We generated a model of intravulvar CTVT in dogs. A CTVT lysate antigen was prepared according to the method of 1-butanol and after administered with complete Freund's adjuvant via subcutaneous in female healthy dogs and challenge with CTVT cells to corroborate the immunogenicity. Short-time generated dendritic cell pulsed with CTVT whole-lysate was performed, and analyzed by FITC-dextran uptake assay and characterized using anti-canine monoclonal antibodies CD14, CD80, CD83, and DLAII by flow cytometry. Dendritic cell therapy was administered in a frequency of three times every 2 weeks when the CTVT had 4 months of growth and 89 ± 5 cm diameter. The CD3+, CD4+ and CD8+ lymphocytes were determined by flow cytometry, and IFN-γ by ELISA assay. RESULTS AND DISCUSSION: The administration of CTVT whole-lysate resulted in tumor prevention. The short-time generated dendritic cell pulsed with CTVT whole-lysate administration resulted in an efficient reduction and elimination of CTVT, probably due to the increase in lymphocyte populations (CD3+, CD4+, and CD8+), IFN-γ production and tumor infiltrating lymphocytes. CONCLUSION: In conclusion, this study demonstrates the efficacy of immunotherapy based in short-time generated dendritic cell pulsed with CTVT whole-lysate for the treatment of CTVT, and offer veterinary oncologists new alternative therapies to treat this and another malignancy.


Subject(s)
Antigens, Neoplasm/immunology , Cancer Vaccines/immunology , Dendritic Cells/immunology , Dog Diseases/prevention & control , Immunotherapy/methods , Venereal Tumors, Veterinary/prevention & control , Animals , Dog Diseases/immunology , Dogs , Female , Lymphocytes, Tumor-Infiltrating/cytology , Lymphocytes, Tumor-Infiltrating/immunology , Venereal Tumors, Veterinary/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...