Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 69(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38917834

ABSTRACT

Objetive: .Although transcranial direct current stimulation constitutes a non-invasive neuromodulation technique with promising results in a great variety of applications, its clinical implementation is compromised by the high inter-subject variability reported. This study aims to analyze the inter-subject variability in electric fields (E-fields) over regions of the cortical motor network under two electrode montages: the classical C3Fp2 and an alternative P3F3, which confines more the E-field over this region.Approach.Computational models of the head of 98 healthy subjects were developed to simulate the E-field under both montages. E-field parameters such as magnitude, focality and orientation were calculated over three regions of interest (ROI): M1S1, supplementary motor area (SMA) and preSMA. The role of anatomical characteristics as a source of inter-subject variability on E-field parameters and individualized stimulation intensity were addressed using linear mixed-effect models.Main results.P3F3 showed a more confined E-field distribution over M1S1 than C3Fp2; the latter elicited higher E-fields over supplementary motor areas. Both montages showed high inter-subject variability, especially for the normal component over C3Fp2. Skin, bone and CSF ROI volumes showed a negative association with E-field magnitude irrespective of montage. Grey matter volume and montage were the main sources of variability for focality. The curvature of gyri was found to be significantly associated with the variability of normal E-fields.Significance.Computational modeling proves useful in the assessment of E-field variability. Our simulations predict significant differences in E-field magnitude and focality for C3Fp2 and P3F3. However, anatomical characteristics were also found to be significant sources of E-field variability irrespective of electrode montage. The normal E-field component better captured the individual variability and low rate of responder subjects observed in experimental studies.


Subject(s)
Electrodes , Motor Cortex , Transcranial Direct Current Stimulation , Humans , Motor Cortex/physiology , Male , Adult , Female , Young Adult
2.
Parkinsonism Relat Disord ; 88: 68-75, 2021 07.
Article in English | MEDLINE | ID: mdl-34144230

ABSTRACT

INTRODUCTION: We aimed to assess associations between multimodal neuroimaging measures of cholinergic basal forebrain (CBF) integrity and cognition in Parkinson's disease (PD) without dementia. METHODS: The study included a total of 180 non-demented PD patients and 45 healthy controls, who underwent structural MRI acquisitions and standardized neurocognitive assessment through the PD-Cognitive Rating Scale (PD-CRS) within the multicentric COPPADIS-2015 study. A subset of 73 patients also had Diffusion Tensor Imaging (DTI) acquisitions. Volumetric and microstructural (mean diffusivity, MD) indices of CBF degeneration were automatically extracted using a stereotactic CBF atlas. For comparison, we also assessed multimodal indices of hippocampal degeneration. Associations between imaging measures and cognitive performance were assessed using linear models. RESULTS: Compared to controls, CBF volume was not significantly reduced in PD patients as a group. However, across PD patients lower CBF volume was significantly associated with lower global cognition (PD-CRStotal: r = 0.37, p < 0.001), and this association remained significant after controlling for several potential confounding variables (p = 0.004). Analysis of individual item scores showed that this association spanned executive and memory domains. No analogue cognition associations were observed for CBF MD. In covariate-controlled models, hippocampal volume was not associated with cognition in PD, but there was a significant association for hippocampal MD (p = 0.02). CONCLUSIONS: Early cognitive deficits in PD without dementia are more closely related to structural MRI measures of CBF degeneration than hippocampal degeneration. In our multicentric imaging acquisitions, DTI-based diffusion measures in the CBF were inferior to standard volumetric assessments for capturing cognition-relevant changes in non-demented PD.


Subject(s)
Basal Forebrain/pathology , Cognitive Dysfunction/physiopathology , Hippocampus/pathology , Magnetic Resonance Imaging , Parkinson Disease/pathology , Parkinson Disease/physiopathology , Aged , Basal Forebrain/diagnostic imaging , Cognitive Dysfunction/etiology , Cohort Studies , Diffusion Tensor Imaging , Female , Hippocampus/diagnostic imaging , Humans , Male , Middle Aged , Multimodal Imaging , Neuroimaging , Neuropsychological Tests , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...