Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Iran J Basic Med Sci ; 25(12): 1452-1459, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36544520

ABSTRACT

Objectives: Spiders of the Loxosceles genus, known as violin spiders, produce venom with dermonecrotic and systemic effects, as it is a species widely distributed in the world, its study represents a high medical relevance. Systemic loxoscelism, which occurs in 1 in 5 cases and is the most frequent in children, can be fatal, so the study of effective therapy is of great relevance. In the present study, we compared different therapeutic options to mitigate the systemic effects of Loxosceles boneti venom in a model in which prepubertal rats were used. Materials and Methods: A model of systemic intoxication by L. boneti venom was provoked in male Wistar rats. Study groups were formed: healthy control, with venom and untreated control, treatment with N-acetylcysteine, and/or hyperbaric oxygenation therapy. Subsequently, pathological analysis of the kidney and lung was performed. The oxidant-antioxidant response was evaluated, and molecular analysis of the COX-1 and COX-2 enzymes was performed. Results: Regenerative changes were observed at the cellular level in both treatments, being more noticeable in the hyperbaric oxygen therapy (HBO) group. The anti-oxidant response was outstanding in the same group. Conclusion: Both treatments offer considerable benefits, however; further studies are needed to provide adequate therapeutics.

2.
Pharmacol Res Perspect ; 9(4): e00784, 2021 08.
Article in English | MEDLINE | ID: mdl-34176244

ABSTRACT

Myocardial ischemia continues to be the first cause of morbimortality in the world; the definitive treatment is reperfusion; however, this action causes additional damage to ischemic myocardial tissue; this forces to seek therapies of cardioprotection to reduce this additional damage. There are many cardioprotective agents; within these, cannabinoids have shown to have beneficial effects, mainly cannabidiol (CBD). CBD is a non psychoactive cannabinoid. To evaluate the effect in experimental models of CBD in myocardial ischemia reperfusion in rats, twelve-week-old male rats have been used. The animals were divides in 3 groups: control(C), ischemia reperfusion (IR) and CBD pretreatment (1/day/5mg/kg /10days). Langendorff organ isolate studies were performed, and the area of infarction was assessed with triphenyl tetrazolium, in addition to molecular analysis of AT1 and AT2 receptors and Akt and Erk proteins and their phosphorylated forms related to RISK pathways. It was observed that there is an improvement with the use of CBD increasing inotropism and cardiac lusitropism, improving considerably the cardiovascular functionality. These could be related to the reduction of the area of infarction and activation of the AT2 receptor and the RISK pathway with absence of activation of the AT2 receptor (these could relate the reduction of the infarct area and the restoration of cardiovascular function with the activation of the AT2 receptor and the RISK pathway with the absence of activation of the AT2 receptor). The use of cannabinoids was shown to have beneficial effects when used as a treatment for myocardial reperfusion damage.


Subject(s)
Cannabidiol/therapeutic use , Cardiotonic Agents/therapeutic use , Myocardial Reperfusion Injury/drug therapy , Animals , Cannabidiol/pharmacology , Cardiotonic Agents/pharmacology , Heart/physiology , Hemodynamics , In Vitro Techniques , MAP Kinase Signaling System/drug effects , Male , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/physiopathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Wistar , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 2/metabolism , Ventricular Function, Left/drug effects
3.
J Ophthalmol ; 2020: 9638763, 2020.
Article in English | MEDLINE | ID: mdl-32908689

ABSTRACT

OBJECTIVE: In the pathogenesis of pterygium, the protective role of glutathione and nitric oxide production is unclear. These are important factors for homeostasis in the redox state of cells. The aim of this study was to determine the levels of these and related parameters in pterygium tissue. Patients and Methods. The study sample consisted of 120 patients diagnosed with primary or recurrent pterygium. Five groups of tissue samples were examined: control, primary pterygium, recurrent pterygium, and two groups of primary pterygium given a one-month NAC presurgery treatment (topical or systemic). The levels of endothelial nitric oxide synthase (eNOS), nitric oxide (NO), 3-nitrotyrosine (3NT), reduced and oxidized glutathione (GSH and GSSG), and catalase (CAT) were evaluated in tissue homogenates. RESULTS: Compared with the control, decreased levels of eNOS, NO, and 3-nitrotyrosine as well as the degree of oxidation of GSH (GSSG%) were observed in primary and recurrent pterygium. 3-Nitrotyrosine and GSSG% were reduced in the other pterygium groups. GSH and CAT were enhanced in recurrent pterygium and systemic-treated primary pterygium but were unchanged for topical-treated primary pterygium. There was a strong positive correlation of eNOS with NO and 3NT, GSSG% with NO and 3NT, and GSH with GSSG and CAT. Women showed a higher level of GSH and catalase in primary pterygium, whereas a lower level of GSH and a higher level of NO in recurrent pterygium. CONCLUSION: The results are congruent with the following proposed sequence of events leading to a protective response of the organism during the pathogenesis of primary pterygium: a decreased level of eNOS provokes a decline in the level of NO in pterygium tissue, which then leads to reduced S-nitrosylation of GSH or other thiols and possibly to the modulation of the intracellular level of GSH through synthesis and/or mobilization from other tissues.

4.
Psychoneuroendocrinology ; 117: 104700, 2020 07.
Article in English | MEDLINE | ID: mdl-32387874

ABSTRACT

Stress seems to affect the onset and evolution of diverse illnesses with an inflammatory substrate. Whether physiological or psychological, stress increases epithelial permeability. In the mucosa of the nasal cavity and upper respiratory tract, the epithelial barrier is regulated in large part by bicellular and tricellular tight junctions (bTJs and tTJs, respectively). The junctional complexes are composed of multiple membrane proteins: claudins, tight-junction-associated MARVEL proteins (TAMs: occludin, tricellulin and marvelD3), and scaffolding proteins such as ZO-1, -2 and -3. The aim of the present study was to examine the possible modification of nasal permeability and TJ protein expression in a mouse model of acute psychological stress (a 4-h immobility session). Serum corticosterone was quantified from plasma samples to verify the onset of stress. Evaluation was made of the relative concentration of key proteins in nasal mucosa by using Western blot, and of changes in permeability by analyzing FITC-Dextran leakage from the nose to the blood. Compared to the control, the stressed group showed a greater epithelial permeability to FITC-Dextran, a reduced expression of occludin and tricellulin, and an elevated expression of ZO-2 and claudin-4. This evidence points to increased paracellular flow of large molecules through an altered structure of tTJs. Apparently, the structure of bTJs remained unchanged. The current findings could provide insights into the relation of stress to the onset/exacerbation of respiratory infections and/or allergies.


Subject(s)
Corticosterone/blood , Nasal Mucosa , Stress, Psychological/metabolism , Tight Junctions , Animals , Dextrans , Fluorescein-5-isothiocyanate/analogs & derivatives , Mice , Mice, Inbred BALB C , Nasal Mucosa/metabolism , Nasal Mucosa/physiopathology , Restraint, Physical , Stress, Psychological/blood , Tight Junctions/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...