Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Sci ; 4(4)2017 Oct 10.
Article in English | MEDLINE | ID: mdl-29056709

ABSTRACT

Urban parks are green areas of cities where families and children spend hours outside. Turtles often inhabit urban parks. However, even if the animals seem harmless, they may serve as both reservoirs or accidental hosts for different serotypes of Leptospira spp. Leptospira spp. is a waterborne zoonotic bacterium relevant for public health. Reptiles and amphibians may play a role in the epidemiology, transmission, and persistence of Leptospira spp. In the present study, we observed the presence of anti-leptospiral agglutinins in a group of freshwater turtles (Trachemys scripta) captured in three urban ponds of the metropolitan city of Turin, Italy.

2.
Article in English | MEDLINE | ID: mdl-15556390

ABSTRACT

The aim of the study was to measure beta-adrenergic (beta-AR) and serotonergic (5-HTR) receptor concentrations in different brain areas (frontal cortex, hippocampus, hypothalamus and thalamus) of normal and aggressive dogs. Eight adult male dogs, 4.2+/-0.6 years old, showing no clinical signs but aggression, were used for the study. Eight healthy male dogs, 4.4+/-0.8 years old, with no history of neurological and/or behavioural disorders and accidental death, were used as controls. The whole frontal cortex, hippocampus, thalamus and hypothalamus were collected after euthanasia and plasma membrane fractions obtained by ultracentrifugation. beta-AR and 5-HTR were measured by binding assays using specific radioligand [(-)[3H]CGP 12177 and 5-hydroxy[3H]-tryptamine trifluoroacetate, respectively]. A significant decrease in beta-AR levels was observed in the frontal cortex (P=0.001), hippocampus (P<0.0001), and thalamus (P<0.0001) of aggressive dogs compared to controls. As far as 5-HTR are concerned, two receptor subtypes were detected. The two subtypes were classified as low-affinity (5-HTR LA) and high-affinity (5-HTR HA) serotonergic receptors for [3H]-hydroxytryptamine, on the basis of their affinity for [3H]-hydroxytryptamine. 5-HTR LA significantly increased in the whole central nervous system (CNS) area of aggressive dogs (frontal cortex P=0.071; hippocampus P=0.0013; thalamus P<0.0001; hypothalamus P=0.0004); 5-HTR HA significantly increased only in the thalamus (P=0.0005) and hypothalamus (P=0.0002). Results suggest the possible role played by the catecholaminergic and serotonergic systems in canine aggressive behaviour. The understanding of the biological basis of canine aggression may enable the development of pharmacological treatments that would target specific neurotransmitter systems.


Subject(s)
Brain/metabolism , Receptors, Adrenergic/metabolism , Receptors, Serotonin/metabolism , Animals , Dogs , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...