Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(26): 43004-43016, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38178404

ABSTRACT

We present the pedestal-free thulium doped silica fiber with a large nanostructured core optimized for fiber lasers. The fiber is composed of over 6 thousand thulium doped silica nanorods with a diameter of 71 nm each which form a nanostructured step-index core. We study the influence of non-continuous distribution in nanoscale active areas on gain, beam quality, and fiber laser performance. The proof-of-concept fiber is effectively single mode for wavelength above 1.8 µm. We demonstrate the performance of the fiber in a laser setup pumped at 792 nm. Single mode laser emission with a slope efficiency of 29% at quasi-continuous output power of 4 W with M2 = 1.3 at the emission spectrum 1880-1925 nm is achieved.

2.
Opt Express ; 30(6): 10050-10062, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35299415

ABSTRACT

We investigate the influence of various optical fiber fabrication processes on the fluorescence decay of RE ions commonly used in fiber lasers and amplifiers, i.e. Yb3+, Tm3+ and Ho3+. Optical fiber preforms were prepared using the MCVD method combined with Al2O3 nanoparticle doping and subjected to subsequent heat treatment processes such as preform elongation and fiber drawing. The fluorescence decay of RE ions was measured in multiple stages of optical fiber preparation: in an original preform, in an elongated preform (cane), in a standard fiber, and in an overcladded fiber. It was found that heat treatment processing of the preforms generally leads to a faster fluorescence decay, which can be explained by the diffusion of dopants and clustering of RE ions. The fiber drawing exhibited a greater effect compared to preform elongation, which was ascribed to a faster cooling rate of the process. In general, the heat treatment of RE-doped silica glass preforms leads to the decline of fluorescence decay.

3.
Opt Express ; 29(7): 10659-10675, 2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33820196

ABSTRACT

A nanostructured core silica fiber with active and photosensitive areas implemented within the fiber core is demonstrated. The photosensitivity, active and passive properties of the fiber can be independently shaped with this new approach. We show that discrete local doping with active ions in form of nanorods allow to obtain effective laser action as in case of continuous distribution of the ions in the core. Co-existing discrete photosensitive nanostructure of germanium doped silica determine single-mode performance and allow inscription of highly efficient Bragg grating over the entire core area. Each nanostructure do not degrade performance of other one since physical interaction between active and photosensitive areas are removed. As a proof of concept, we have designed and fabricated the nanostructured, ytterbium single-mode silica fiber laser with the Bragg grating inscribed in the entire core area. We demonstrated fiber laser with good quality of generated laser beam (M2=1.1) with lasing efficiency of 44% and inscribed Bragg grating with 98.5% efficiency and -18 dB contrast.

4.
Opt Express ; 27(24): 35108-35119, 2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31878686

ABSTRACT

We report development of ytterbium doped silica fiber with nanostructured core for laser applications. We study influence of non-continuous distributed Yb dopants on gain, beam quality, and fiber laser performance. The fiber core is composed of over 43 thousand nanorods with a central part doped with Yb. The diameter of each nanorod is 72 nm. With this method we obtained a flat refractive index profile with uniformity of 1.3 × 10-4 refractive index unit (RIU) despite the non-uniformity of 1.2 × 10-3 RIU in Yb doped preform rods used for the fiber development. We demonstrate a nanostructured core single-mode fiber laser with 61.8% of slope efficiency, and extremely low numerical aperture 0.027 of generated mode.

5.
Materials (Basel) ; 7(6): 4723-4738, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-28788702

ABSTRACT

In the paper, we report on the development of a synthesis and melting method of phosphate glasses designed for active microstructured fiber manufacturing. Non-doped glass synthesized in a P2O5-Al2O3-BaO-ZnO-MgO-Na2O oxide system served as the matrix material; meanwhile, the glass was doped with 6 mol% (18 wt%) of Yb2O3, as fiber core. The glasses were well-fitted in relation to optical (refractive index) and thermal proprieties (thermal expansion coefficient, rheology). The fiber with the Yb3+-doped core, with a wide internal photonic microstructure for a laser pump, as well as with a high relative hole size in the photonic outer air-cladding, was produced. The laser built on the basis of this fiber enabled achieving 8.07 W of output power with 20.5% slope efficiency against the launched pump power, in single-mode operation M² = 1.59, from a 53 cm-long cavity.

SELECTION OF CITATIONS
SEARCH DETAIL
...