Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38809511

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+) is a universal coenzyme regulating cellular energy metabolism in many cell types. Recent studies have demonstrated the close relationships between defective NAD+ metabolism and aging and age-associated metabolic diseases. The major purpose of the present study was to test the hypothesis that NAD+ biosynthesis, mediated by a rate-limiting NAD+ biosynthetic enzyme, nicotinamide phosphoribosyltransferase (NAMPT), is essential for maintaining normal adipose tissue function and whole-body metabolic health during the aging process. To this end, we provided in-depth and comprehensive metabolic assessments for female adipocyte-specific Nampt knockout (ANKO) mice during aging. We first evaluated body fat mass in young (≤ 4-month-old), middle aged (10 to 14-month-old), and old (≥ 18-month-old) mice. Intriguingly, adipocyte-specific Nampt deletion protected against age-induced obesity without changing energy balance. However, data obtained from the hyperinsulinemic euglycemic clamp procedure demonstrated that, despite the lean phenotype, old ANKO mice had severe insulin resistance in skeletal muscle, heart, and white adipose tissue (WAT). Old ANKO mice also exhibited hyperinsulinemia and hypoadiponectinemia. Mechanistically, loss of Nampt caused marked decreases in WAT gene expression of lipogenic targets of peroxisome proliferator-activated receptor gamma (PPARγ) in an age-dependent manner. In addition, administration of a PPARγ agonist rosiglitazone restored fat mass and improved metabolic abnormalities in old ANKO mice. In conclusion, these findings highlight the importance of the NAMPT-NAD+-PPARγ axis in maintaining functional integrity and quantity of adipose tissue, and whole-body metabolic function in female mice during aging.

2.
Biochem Biophys Res Commun ; 674: 162-169, 2023 09 24.
Article in English | MEDLINE | ID: mdl-37421924

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+) functions as an essential cofactor regulating a variety of biological processes. The purpose of the present study was to determine the role of nuclear NAD+ biosynthesis, mediated by nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1), in thermogenesis and whole-body energy metabolism. We first evaluated the relationship between NMNAT1 expression and thermogenic activity in brown adipose tissue (BAT), a key organ for non-shivering thermogenesis. We found that reduced BAT NMNAT1expression was associated with inactivation of thermogenic gene program induced by obesity and thermoneutrality. Next, we generated and characterized adiponectin-Cre-driven adipocyte-specific Nmnat1 knockout (ANMT1KO) mice. Loss of NMNAT1 markedly reduced nuclear NAD+ concentration by approximately 70% in BAT. Nonetheless, adipocyte-specific Nmnat1 deletion had no impact on thermogenic (rectal temperature, BAT temperature and whole-body oxygen consumption) responses to ß-adrenergic ligand norepinephrine administration and acute cold exposure, adrenergic-mediated lipolytic activity, and metabolic responses to obesogenic high-fat diet feeding. In addition, loss of NMNAT1 did not affect nuclear lysine acetylation or thermogenic gene program in BAT. These results demonstrate that adipocyte NMNAT1 expression is required for maintaining nuclear NAD+ concentration, but not for regulating BAT thermogenesis or whole-body energy homeostasis.


Subject(s)
Adipocytes , Energy Metabolism , Nicotinamide-Nucleotide Adenylyltransferase , Thermogenesis , Animals , Mice , Mice, Knockout , Diet, High-Fat , Nicotinamide-Nucleotide Adenylyltransferase/genetics , Adipocytes/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism
3.
J Endocr Soc ; 5(5): bvab024, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33869980

ABSTRACT

Obesity is associated with insulin resistance, an important risk factor of type 2 diabetes, atherogenic dyslipidemia, and nonalcoholic fatty liver disease. The major purpose of this study was to test hypothesize that prophylactic removal of epididymal visceral adipose tissue (VAT) prevents obesity-induced multi-organ (liver, skeletal muscle, adipose tissue) insulin resistance. Accordingly, we surgically removed epididymal VAT pads from adult C57BL/6J mice and evaluated in vivo and cellular metabolic pathways involved in glucose and lipid metabolism following chronic high-fat diet (HFD) feeding. We found that VAT removal decreases HFD-induced body weight gain while increasing subcutaneous adipose tissue (SAT) mass. Strikingly, VAT removal prevents obesity-induced insulin resistance and hyperinsulinemia and markedly enhances insulin-stimulated AKT-phosphorylation at serine-473 (Ser473) and threonine-308 (Thr308) sites in SAT, liver, and skeletal muscle. VAT removal leads to decreases in plasma lipid concentrations and hepatic triglyceride (TG) content. In addition, VAT removal increases circulating adiponectin, a key insulin-sensitizing adipokine, whereas it decreases circulating interleukin 6, a pro-inflammatory adipokine. Consistent with these findings, VAT removal increases adenosine monophosphate-activated protein kinase C phosphorylation, a major downstream target of adiponectin signaling. Data obtained from RNA sequencing suggest that VAT removal prevents obesity-induced oxidative stress and inflammation in liver and SAT, respectively. Taken together, these findings highlight the metabolic benefits and possible action mechanisms of prophylactic VAT removal on obesity-induced insulin resistance and hepatosteatosis. Our results also provide important insight into understanding the extraordinary capability of adipose tissue to influence whole-body glucose and lipid metabolism as an active endocrine organ.

4.
Science ; 372(6547): 1224-1229, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33888596

ABSTRACT

In rodents, obesity and aging impair nicotinamide adenine dinucleotide (NAD+) biosynthesis, which contributes to metabolic dysfunction. Nicotinamide mononucleotide (NMN) availability is a rate-limiting factor in mammalian NAD+ biosynthesis. We conducted a 10-week, randomized, placebo-controlled, double-blind trial to evaluate the effect of NMN supplementation on metabolic function in postmenopausal women with prediabetes who were overweight or obese. Insulin-stimulated glucose disposal, assessed by using the hyperinsulinemic-euglycemic clamp, and skeletal muscle insulin signaling [phosphorylation of protein kinase AKT and mechanistic target of rapamycin (mTOR)] increased after NMN supplementation but did not change after placebo treatment. NMN supplementation up-regulated the expression of platelet-derived growth factor receptor ß and other genes related to muscle remodeling. These results demonstrate that NMN increases muscle insulin sensitivity, insulin signaling, and remodeling in women with prediabetes who are overweight or obese (clinicaltrial.gov NCT03151239).


Subject(s)
Dietary Supplements , Insulin Resistance , Muscle, Skeletal/metabolism , Nicotinamide Mononucleotide/administration & dosage , Overweight/metabolism , Prediabetic State/metabolism , Aged , Body Composition , Double-Blind Method , Female , Humans , Insulin/administration & dosage , Insulin/metabolism , Middle Aged , Mitochondria, Muscle/metabolism , NAD/blood , NAD/metabolism , Nicotinamide Mononucleotide/metabolism , Obesity/metabolism , Postmenopause , RNA-Seq , Signal Transduction
5.
Endocrinology ; 162(3)2021 03 01.
Article in English | MEDLINE | ID: mdl-33543238

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+) is an essential coenzyme that regulates cellular energy metabolism in many cell types. The major purpose of the present study was to test the hypothesis that NAD+ in white adipose tissue (WAT) is a regulator of whole-body metabolic flexibility in response to changes in insulin sensitivity and with respect to substrate availability and use during feeding and fasting conditions. To this end, we first evaluated the relationship between WAT NAD+ concentration and metabolic flexibility in mice and humans. We found that WAT NAD+ concentration was increased in mice after calorie restriction and exercise, 2 enhancers of metabolic flexibility. Bariatric surgery-induced 20% weight loss increased plasma adiponectin concentration, skeletal muscle insulin sensitivity, and WAT NAD+ concentration in people with obesity. We next analyzed adipocyte-specific nicotinamide phosphoribosyltransferase (Nampt) knockout (ANKO) mice, which have markedly decreased NAD+ concentrations in WAT. ANKO mice oxidized more glucose during the light period and after fasting than control mice. In contrast, the normal postprandial stimulation of glucose oxidation and suppression of fat oxidation were impaired in ANKO mice. Data obtained from RNA-sequencing of WAT suggest that loss of NAMPT increases inflammation, and impairs insulin sensitivity, glucose oxidation, lipolysis, branched-chain amino acid catabolism, and mitochondrial function in WAT, which are features of metabolic inflexibility. These results demonstrate a novel function of WAT NAMPT-mediated NAD+ biosynthesis in regulating whole-body metabolic flexibility, and provide new insights into the role of adipose tissue NAD+ biology in metabolic health.


Subject(s)
Adipose Tissue/metabolism , Cytokines/metabolism , Energy Metabolism/physiology , NAD/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Adult , Animals , Cytokines/genetics , Fatty Acids/metabolism , Female , Humans , Lipolysis/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Nicotinamide Phosphoribosyltransferase/genetics , Postprandial Period
6.
Proc Natl Acad Sci U S A ; 116(47): 23822-23828, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31694884

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+) is a critical coenzyme for cellular energy metabolism. The aim of the present study was to determine the importance of brown and white adipose tissue (BAT and WAT) NAD+ metabolism in regulating whole-body thermogenesis and energy metabolism. Accordingly, we generated and analyzed adipocyte-specific nicotinamide phosphoribosyltransferase (Nampt) knockout (ANKO) and brown adipocyte-specific Nampt knockout (BANKO) mice because NAMPT is the rate-limiting NAD+ biosynthetic enzyme. We found ANKO mice, which lack NAMPT in both BAT and WAT, had impaired gene programs involved in thermogenesis and mitochondrial function in BAT and a blunted thermogenic (rectal temperature, BAT temperature, and whole-body oxygen consumption) response to acute cold exposure, prolonged fasting, and administration of ß-adrenergic agonists (norepinephrine and CL-316243). In addition, the absence of NAMPT in WAT markedly reduced adrenergic-mediated lipolytic activity, likely through inactivation of the NAD+-SIRT1-caveolin-1 axis, which limits an important fuel source fatty acid for BAT thermogenesis. These metabolic abnormalities were rescued by treatment with nicotinamide mononucleotide (NMN), which bypasses the block in NAD+ synthesis induced by NAMPT deficiency. Although BANKO mice, which lack NAMPT in BAT only, had BAT cellular alterations similar to the ANKO mice, BANKO mice had normal thermogenic and lipolytic responses. We also found NAMPT expression in supraclavicular adipose tissue (where human BAT is localized) obtained from human subjects increased during cold exposure, suggesting our finding in rodents could apply to people. These results demonstrate that adipose NAMPT-mediated NAD+ biosynthesis is essential for regulating adaptive thermogenesis, lipolysis, and whole-body energy metabolism.


Subject(s)
Adaptation, Physiological , Adipose Tissue, Brown/metabolism , Energy Metabolism , Homeostasis , NAD/biosynthesis , Thermogenesis , Adipose Tissue, Brown/enzymology , Animals , Caveolin 1/antagonists & inhibitors , Cold Temperature , Cytokines/genetics , Fasting , Humans , Mice , Mice, Knockout , Nicotinamide Mononucleotide/administration & dosage , Nicotinamide Phosphoribosyltransferase/genetics
7.
Am J Physiol Endocrinol Metab ; 315(4): E520-E530, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29634313

ABSTRACT

Mitochondrial dysfunction in adipose tissue is involved in the pathophysiology of obesity-induced systemic metabolic complications, such as type 2 diabetes, insulin resistance, and dyslipidemia. However, the mechanisms responsible for obesity-induced adipose tissue mitochondrial dysfunction are not clear. The aim of present study was to test the hypothesis that nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase sirtuin-3 (SIRT3) in adipocytes plays a critical role in adipose tissue mitochondrial biology and obesity. We first measured adipose tissue SIRT3 expression in obese and lean mice. Next, adipocyte-specific mitochondrial Sirt3 knockout (AMiSKO) mice were generated and metabolically characterized. We evaluated glucose and lipid metabolism in adult mice fed either a regular-chow diet or high-fat diet (HFD) and in aged mice. We also determined the effects of Sirt3 deletion on adipose tissue metabolism and mitochondrial biology. Supporting our hypothesis, obese mice had decreased SIRT3 gene and protein expression in adipose tissue. However, despite successful knockout of SIRT3, AMiSKO mice had normal glucose and lipid metabolism and did not change metabolic responses to HFD-feeding and aging. In addition, loss of SIRT3 had no major impact on putative SIRT3 targets, key metabolic pathways, and mitochondrial function in white and brown adipose tissue. Collectively, these findings suggest that adipocyte SIRT3 is dispensable for maintaining normal adipose tissue mitochondrial function and whole body metabolism. Contrary to our hypothesis, loss of SIRT3 function in adipocytes is unlikely to contribute to the pathophysiology of obesity-induced metabolic complications.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , Energy Metabolism/genetics , Mitochondria/metabolism , Sirtuin 3/genetics , Animals , Diet, High-Fat , Mice , Mice, Knockout , Mice, Obese , Sirtuin 3/metabolism
8.
J Clin Endocrinol Metab ; 103(3): 1068-1076, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29294006

ABSTRACT

Context: Many biological pathways involved in regulating substrate metabolism display rhythmic oscillation patterns. In rodents, clock genes regulate circadian rhythms of metabolic genes and substrate metabolism. However, the interrelationships among substrate metabolism, metabolic genes, and clock genes have not been fully explored in people. Objective: We tested the hypothesis that the diurnal expression pattern of pyruvate dehydrogenase kinase 4 (PDK4), a key metabolic enzyme involved in fuel switching between glucose and free fatty acids (FFAs), is associated with plasma FFA concentration and clock genes. Design and Methods: We analyzed peripheral blood mononuclear cells (PBMCs), subcutaneous adipose tissue, and plasma samples obtained serially during 24 hours from metabolically healthy women (n = 10) and evaluated the interrelationships among PDK4, plasma FFA, and clock genes. We also determined the potential mechanisms responsible for PDK4 transcriptional regulation by using primary human PBMCs and adipocytes. Results: We found that PDK4 diurnal expression patterns were similar in PBMCs and adipose tissue (ρ = 0.84, P < 0.001). The diurnal variation in PBMC PDK4 expression correlated more strongly with plasma FFA and insulin (ρ = 0.86 and 0.63, respectively, both P < 0.001) concentrations than clock genes. Data obtained from primary culture experiments demonstrated that FFAs directly induced PDK4 gene expression, at least in part through activation of peroxisome proliferator-activated receptor α. Conclusions: Our results suggest that plasma FFA availability is an important regulator of diurnal expression patterns of PDK4, and we identify a novel interaction between plasma FFA and cellular diurnal rhythms in regulating substrate metabolism.


Subject(s)
Circadian Rhythm/physiology , Fatty Acids, Nonesterified/blood , Gene Expression/physiology , Protein Serine-Threonine Kinases/blood , Adipocytes/physiology , Adult , CLOCK Proteins/blood , Female , Healthy Volunteers , Humans , Insulin/blood , Leukocytes, Mononuclear/physiology , Middle Aged , PPAR alpha/physiology , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Subcutaneous Fat/physiology , Transcription, Genetic
9.
Cell Rep ; 16(7): 1851-60, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27498863

ABSTRACT

Obesity is associated with adipose tissue dysfunction and multi-organ insulin resistance. However, the mechanisms of such obesity-associated systemic metabolic complications are not clear. Here, we characterized mice with adipocyte-specific deletion of nicotinamide phosphoribosyltransferase (NAMPT), a rate-limiting NAD(+) biosynthetic enzyme known to decrease in adipose tissue of obese and aged rodents and people. We found that adipocyte-specific Nampt knockout mice had severe insulin resistance in adipose tissue, liver, and skeletal muscle and adipose tissue dysfunction, manifested by increased plasma free fatty acid concentrations and decreased plasma concentrations of a major insulin-sensitizing adipokine, adiponectin. Loss of Nampt increased phosphorylation of CDK5 and PPARγ (serine-273) and decreased gene expression of obesity-linked phosphorylated PPARγ targets in adipose tissue. These deleterious alterations were normalized by administering rosiglitazone or a key NAD(+) intermediate, nicotinamide mononucleotide (NMN). Collectively, our results provide important mechanistic and therapeutic insights into obesity-associated systemic metabolic derangements, particularly multi-organ insulin resistance.


Subject(s)
Adipocytes/enzymology , Adipose Tissue/enzymology , Cytokines/genetics , Insulin Resistance/genetics , Nicotinamide Phosphoribosyltransferase/genetics , Obesity/genetics , Adipocytes/drug effects , Adipocytes/pathology , Adiponectin , Adipose Tissue/drug effects , Adipose Tissue/pathology , Animals , Cyclin-Dependent Kinase 5/genetics , Cyclin-Dependent Kinase 5/metabolism , Cytokines/deficiency , Fatty Acids, Nonesterified/blood , Female , Gene Expression Regulation , Hypoglycemic Agents/pharmacology , Liver/enzymology , Liver/pathology , Male , Mice , Mice, Knockout , Muscle, Skeletal/enzymology , Muscle, Skeletal/pathology , Nicotinamide Mononucleotide/pharmacology , Nicotinamide Phosphoribosyltransferase/deficiency , Obesity/enzymology , Obesity/pathology , PPAR gamma/genetics , PPAR gamma/metabolism , Phosphorylation , Rosiglitazone , Signal Transduction , Thiazolidinediones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...