Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(19): 13427-13437, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38712858

ABSTRACT

This study assesses the atmospheric impact of reactions between unsaturated hydrocarbons such as isoprene and monoterpenes and peroxy radicals containing various functional groups. We find that reactions between alkenes and acyl peroxy radicals have reaction rates high enough to be feasible in the atmosphere and lead to high molar mass accretion products. Moreover, the reaction between unsaturated hydrocarbons and acyl peroxy radicals leads to an alkyl radical, to which molecular oxygen rapidly adds. This finding is confirmed by both theoretical calculations and experiments. The formed perester peroxy radical may either undergo further H-shift reactions or react bimolecularly. The multifunctional oxygenated compounds formed through acyl peroxy radical + alkene reactions are potentially important contributors to particle formation and growth. Thus, acyl peroxy radical-initiated oxidation chemistry may need to be included in atmospheric models.

2.
J Phys Chem A ; 126(39): 6908-6919, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36129815

ABSTRACT

The spectroscopy of all-trans-retinoic acid (ATRA), an important molecule of biological origin that can be found in nature, is investigated at the air-water interface using UV-Vis and IR reflection spectroscopy. We employ a UV-Vis reflection absorption spectroscopy (RAS) experiment along with infrared reflection absorption spectroscopy (IR-RAS) to probe ATRA at the air-water interface. We elucidate the factors influencing the spectroscopy of ATRA at the air-water interface and compare its spectra at the water surface with results of bulk samples obtained with conventional spectroscopic methods and computational chemistry. Monolayers of pure ATRA as well as mixed ATRA with stearic-d35 acid were prepared, and the spectroscopy reveals that ATRA forms J-aggregates with itself, causing a significant redshift of its S0 to S1 electronic transition. Pure ATRA monolayers are found to be unstable at the air-water interface and are lost from the surface over time due to the formation of aggregates. The mixture of ATRA and stearic-d35 acid has been shown to stabilize the monolayers and inhibit the loss of surface ATRA. On the basis of our observations, we propose that ATRA could be a significant photosensitizer in natural aqueous environments.


Subject(s)
Air , Water , Photosensitizing Agents , Spectrophotometry, Infrared , Tretinoin , Water/chemistry
3.
Rev Sci Instrum ; 93(6): 065103, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35778039

ABSTRACT

The VERsatile DIffractometer will set a new standard for a world-class magnetic diffractometer with versatility for both powder and single crystal samples and capability for wide-angle polarization analysis. The instrument will utilize a large single-frame bandwidth and will offer high-resolution at low momentum transfers and excellent signal-to-noise ratio. A horizontal elliptical mirror concept with interchangeable guide pieces will provide high flexibility in beam divergence to allow for a high-resolution powder mode, a high-intensity single crystal mode, and a polarized beam option. A major science focus will be quantum materials that exhibit emergent properties arising from collective effects in condensed matter. The unique use of polarized neutrons to isolate the magnetic signature will provide optimal experimental input to state-of-the-art modeling approaches to access detailed insight into local magnetic ordering.

4.
Phys Chem Chem Phys ; 24(11): 6757-6768, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35237773

ABSTRACT

Alpha-keto acids are environmentally and biologically relevant species whose chemistry has been shown to be influenced by their local environment. Vibrational spectroscopy provides useful ways to probe the potential inter- and intramolecular interactions available to them in several phases. We measure and compare the IR spectra of 2-oxo-octanoic acid (2OOA) in the gas phase, solid phase, and at the air-water interface. With theoretical support, we assign many of the vibrational modes in each of the spectra. In the gas phase, two types of conformers are identified and distinguished, with the intramolecularly H-bonded form being the dominant type, while the second conformer type identified does not have an intramolecular hydrogen bond. The van der Waals interactions between molecules in solid 2OOA manifest C-H and CO vibrations lower in energy than in the gas phase and we propose an intermolecular hydrogen bonding scheme for the solid phase. At the air-water interface the hydrocarbon tails of 2OOA do interact with each other while the carbonyls appear to interact with water in the subphase, but not with neighboring 2OOA as might be expected of a closely packed surfactant film.


Subject(s)
Caprylates , Vibration , Hydrogen Bonding , Spectrophotometry, Infrared/methods , Water/chemistry
5.
IUCrJ ; 8(Pt 1): 33-45, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33520241

ABSTRACT

Spinel iron oxide nanoparticles of different mean sizes in the range 10-25 nm have been prepared by surfactant-free up-scalable near- and super-critical hydro-thermal synthesis pathways and characterized using a wide range of advanced structural characterization methods to provide a highly detailed structural description. The atomic structure is examined by combined Rietveld analysis of synchrotron powder X-ray diffraction (PXRD) data and time-of-flight neutron powder-diffraction (NPD) data. The local atomic ordering is further analysed by pair distribution function (PDF) analysis of both X-ray and neutron total-scattering data. It is observed that a non-stoichiometric structural model based on a tetragonal γ-Fe2O3 phase with vacancy ordering in the structure (space group P43212) yields the best fit to the PXRD and total-scattering data. Detailed peak-profile analysis reveals a shorter coherence length for the superstructure, which may be attributed to the vacancy-ordered domains being smaller than the size of the crystallites and/or the presence of anti-phase boundaries, faulting or other disorder effects. The intermediate stoichiometry between that of γ-Fe2O3 and Fe3O4 is confirmed by refinement of the Fe/O stoichiometry in the scattering data and quantitative analysis of Mössbauer spectra. The structural characterization is complemented by nano/micro-structural analysis using transmission electron microscopy (TEM), elemental mapping using scanning TEM, energy-dispersive X-ray spectroscopy and the measurement of macroscopic magnetic properties using vibrating sample magnetometry. Notably, no evidence is found of a Fe3O4/γ-Fe2O3 core-shell nanostructure being present, which had previously been suggested for non-stoichiometric spinel iron oxide nanoparticles. Finally, the study is concluded using the magnetic PDF (mPDF) method to model the neutron total-scattering data and determine the local magnetic ordering and magnetic domain sizes in the iron oxide nanoparticles. The mPDF data analysis reveals ferrimagnetic collinear ordering of the spins in the structure and the magnetic domain sizes to be ∼60-70% of the total nanoparticle sizes. The present study is the first in which mPDF analysis has been applied to magnetic nanoparticles, establishing a successful precedent for future studies of magnetic nanoparticles using this technique.

6.
J Phys Chem A ; 125(1): 218-229, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33377780

ABSTRACT

Lactic acid, a relevant molecule in biology and the environment, is an α-hydroxy acid with a high propensity to form hydrogen bonds, both internally and to other hydrogen-bond-accepting molecules. This work includes the novel recording of infrared spectra of gas-phase lactic acid using Fourier transform infrared spectroscopy, and the vibrational absorption features of lactic acid are assigned with the aid of computationally simulated vibrational spectra with anharmonic corrections. Theoretical chemistry methods are used to relate intramolecular hydrogen-bond strengths to the relative stability of lactic acid conformers. The formation of hydrogen-bonded lactic acid dimers and 1:1 water complexes is investigated by simulated vibrational spectra and calculated thermodynamic parameters for the lactic acid monomer and dimer and its water complex in the gas phase. The results of this study are discussed in the context of environmental chemistry with an emphasis on indoor environments.

7.
J Phys Chem A ; 124(35): 7047-7059, 2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32786966

ABSTRACT

The spectroscopy of cis-OSSO and trans-OSSO is explored and put into the context of the Venusian atmosphere, along with other sulfur compounds potentially present there, namely, S2O, C1-S2O2, trigonal-S2O2, and S3. UV-vis spectra were calculated using the nuclear ensemble approach. The calculated OSSO spectra are shown to match well with the 320-400 nm near-UV absorption previously measured on Venus, and we discuss the challenges of assigning OSSO as the Venusian near-UV absorber. The largest source of uncertainty is getting accurate concentrations of sulfur monoxide (3SO) in the upper cloud layer of Venus (60-70 km altitude) since the 3SO self-reaction is what causes cis- and trans-OSSO to form. Additionally, we employed the matrix-isolation technique to trap OSSO formed by microwave discharging a gas mixture of argon and SO2 and then depositing the mixture onto a cold window (6-12 K). Anharmonic vibrational transition frequencies and intensities were calculated at the coupled cluster level to corroborate the matrix-isolation FTIR spectra. The computationally calculated UV-vis and experimentally recorded IR spectra presented in this work aid future attempts at detecting these sulfur compounds in the Venusian atmosphere.

8.
J Phys Chem A ; 124(7): 1240-1252, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-31976674

ABSTRACT

The conformer-specific reactivity of gas-phase pyruvic acid following the S1(nπ*) ← S0 excitation at λmax = 350 nm (290-380 nm) and the effect of water are investigated for the two lowest energy conformers. Conformer-specific gas-phase pyruvic acid photolysis rate constants and their respective populations are measured by monitoring their distinct vibrational OH-stretching frequencies. The geometry, relative energies, fundamental vibrational frequencies, and electronic transitions of the pyruvic acid conformers and their monohydrated complexes are calculated with density functional theory and ab initio methods. Results from experiment and theory show that the more stable conformer with an intramolecular hydrogen bond dominates the gas-phase photolysis of pyruvic acid. Water greatly affects the gas-phase pyruvic acid conformer population and photochemistry through hydrogen bonding interactions. The addition of water decreases the gas-phase relative population of the more stable conformer and decreases the molecule's gas-phase photolysis rate constants. The theoretical results show that even a single water molecule interrupts the intramolecular hydrogen bond, which is essential for the efficient photodissociation of gas-phase pyruvic acid. Results of this study suggest that the aqueous-phase photochemistry of pyruvic acid proceeds through hydrogen-bonded conformers lacking an intramolecular hydrogen bond.

9.
Phys Rev B ; 101(23)2020 Jun.
Article in English | MEDLINE | ID: mdl-34136736

ABSTRACT

We report experimental studies of a series of BaFe2S3-x Se x (0 ⩽ x ⩽ 3) single crystals and powder specimens using x-ray diffraction, neutron-diffraction, muon-spin-relaxation, and electrical transport measurements. A structural transformation from Cmcm (BaFe2S3) to Pnma (BaFe2Se3) was identified around x = 0.7 - 1. Neutron-diffraction measurements on the samples with x = 0.2, 0.4, and 0.7 reveal that the Néel temperature of the stripe antiferromagnetic order is gradually suppressed from ~120 to 85 K, while the magnitude of the ordered Fe2+ moments shows very little variation. Similarly, the block antiferromagnetic order in BaFe2Se3 remains robust for 1.5 ⩽ x ⩽ 3 with negligible variation in the ordered moment and a slight decrease of the Néel temperature from 250 K (x = 3) to 225 K (x = 1.5). The sample with x = 1 near the Cmcm and Pnma border shows coexisting, two-dimensional, short-range stripe- and block-type antiferromagnetic correlations. The system remains insulating for all x, but the thermal activation gap shows an abrupt increase when traversing the boundary from the Cmcm stripe phase to the Pnma block phase. The results demonstrate that the crystal structure, magnetic order, and electronic properties are strongly coupled in the BaFe2S3-x Se x system.

10.
Phys Rev Mater ; 4(3)2020.
Article in English | MEDLINE | ID: mdl-33659774

ABSTRACT

We report neutron diffraction studies of FeS single crystals obtained from Rb x Fe2-y S2 single crystals via a hydrothermal method. While no 5 × 5 iron vacancy order or block antiferromagnetic order typical of Rb x Fe2-y S2 is found in our samples, we observe C-type short-range antiferromagnetic order with moments pointed along the c axis hosted by a different phase of FeS with an expanded interlayer spacing. The Néel temperature for this magnetic order is determined to be 170 ± 4 K. Our finding of a variant FeS structure hosting this C-type antiferromagnetic order demonstrates that the known FeS phase synthesized in this method is in the vicinity of a magnetically ordered ground state, providing insights into understanding a variety of phenomena observed in FeS and the related FeSe1-x S x iron chalcogenide system.

11.
J Phys Chem A ; 123(30): 6605-6617, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31283236

ABSTRACT

We have calculated, ab initio, the electronic absorption spectrum of sulfuric acid (H2SO4) under atmospherically relevant conditions using a nuclear ensemble approach. The experimental electronic spectrum of H2SO4 is unknown so we benchmark our theoretical results by also considering other related sulfur-containing molecules, namely, sulfur dioxide (SO2), sulfur trioxide (SO3), hydrogen sulfide (H2S), carbonyl sulfide (OCS), and carbon disulfide (CS2), where experimental spectra are available. In general, we find very good agreement between our calculated spectra, which are based on underlying EOM-CCSD electronic structure calculations, and the available experimental spectra. We show that the computational cost of these calculated spectra can be substantively reduced with negligible loss of accuracy by using a combination of results obtained with the aug-cc-pV(D+d)Z+3 and aug-cc-pV(T+d)Z+3 basis sets. Our calculated cross-section for H2SO4 in the UV/VUV region is larger than previous theoretical estimates and greater than the experimentally measured upper limits. We suggest that further experimental attempts to measure the electronic absorption spectrum of H2SO4 in the actinic region (4.0-7.5 eV, 313-167 nm) region are warranted.

12.
Phys Rev Lett ; 122(19): 197203, 2019 May 17.
Article in English | MEDLINE | ID: mdl-31144966

ABSTRACT

We report the discovery of incommensurate magnetism near quantum criticality in CeNiAsO through neutron scattering and zero field muon spin rotation. For T

13.
Chem Asian J ; 14(8): 1111-1116, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-29683264

ABSTRACT

The thermal electrocyclic ring-closure reaction of vinylheptafulvene (VHF) to form dihydroazulene (DHA) is elucidated herein by using DFT and 1 H NMR spectroscopy. Two different transition states were found computationally; one corresponds to a disrotatory pathway, which is allowed according to the Woodward-Hoffmann selection rules, whereas the other corresponds to a conrotatory pathway. The conrotatory pathway is found to be zwitterionic in the transition state, whereas the disrotatory transition state varies in zwitterionic character depending on solvent and substituents in the molecular framework. The conrotatory and disrotatory transition states are found to have similar energy and their relative stability varies with solvent polarity and functionalization at the C1 position. To support these findings, we chemically ring-opened diastereomerically pure 1-(benzothiazol-2-yl)-DHA to give the VHF form, then subsequently thermally reconverted the VHF to DHA in a range of solvents with various polarities. We found that, depending on solvent polarity, different ratios of anti- and syn-diastereoisomers of DHA were formed in a systematic manner, which supports the existence of two distinct thermal ring-closure pathways for VHF.

14.
J Phys Chem A ; 122(39): 7782-7789, 2018 Oct 04.
Article in English | MEDLINE | ID: mdl-30189135

ABSTRACT

We studied the reaction of electronically excited sulfur dioxide in the triplet state (3SO2) with a variety of alkane species, including propane, n-butane, isobutane, n-pentane, n-hexane, cyclohexane, n-octane, and n-nonane. Reaction rate constants for the photoinitiated reaction of SO2 with all of these species were determined and found to be in the range from 3.7 × 10-13 to 5.1 × 10-12 cm3molecule-1s-1. We found that reaction proceeds via a hydrogen abstraction to form HOSO• and organic radical (R•) species and that reactivity is correlated with the energy required to break a C-H bond and the length of the alkane chain. Abstraction rates were found to be fastest for reaction with hydrogen on a tertiary carbon. Similarly, abstraction from secondary carbons is found to be faster than from primary carbons. The reactivity of 3SO2 with alkanes increases with chain length as additional secondary carbons are added.

15.
J Phys Chem A ; 122(18): 4465-4469, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29665331

ABSTRACT

The reaction of electronically excited triplet state sulfur dioxide (3SO2) with water was investigated both theoretically and experimentally. The quantum chemical calculations find that the reaction leads to the formation of hydroxyl radical (OH) and hydroxysulfinyl radical (HOSO) via a low energy barrier pathway. Experimentally the formation of OH was monitored via its reaction with methane, which itself is relatively unreactive with 3SO2, making it a suitable probe of OH production from the reaction of 3SO2 and water. This reaction has implications for the formation of OH in environments that are assumed to be depleted in OH, such as volcanic plumes. This reaction also provides a mechanism for the formation of OH in planetary atmospheres with little or no oxygen (O2) or ozone (O3) present.

16.
Phys Rev B ; 98(18)2018 Nov.
Article in English | MEDLINE | ID: mdl-38915822

ABSTRACT

We report pressure-dependent neutron diffraction and muon spin relaxation/rotation measurements combined with first-principles calculations to investigate the structural, magnetic, and electronic properties of BaFe2S3 under pressure. The experimental results reveal a gradual enhancement of the stripe-type ordering temperature with increasing pressure up to 2.6 GPa and no observable change in the size of the ordered moment. The ab initio calculations suggest that the magnetism is highly sensitive to the Fe-S bond lengths and angles, clarifying discrepancies with previously published results. In contrast to our experimental observations, the calculations predict a monotonic reduction of the ordered moment with pressure. We suggest that the robustness of the stripe-type antiferromagnetism is due to strong electron correlations not fully considered in the calculations.

17.
Phys Rev Lett ; 119(18): 187001, 2017 Nov 03.
Article in English | MEDLINE | ID: mdl-29219610

ABSTRACT

We report on temperature-dependent pair distribution function measurements of Sr_{1-x}Na_{x}Fe_{2}As_{2}, an iron-based superconductor system that contains a magnetic phase with reentrant tetragonal symmetry, known as the magnetic C_{4} phase. Quantitative refinements indicate that the instantaneous local structure in the C_{4} phase comprises fluctuating orthorhombic regions with a length scale of ∼2 nm, despite the tetragonal symmetry of the average static structure. Additionally, local orthorhombic fluctuations exist on a similar length scale at temperatures well into the paramagnetic tetragonal phase. These results highlight the exceptionally large nematic susceptibility of iron-based superconductors and have significant implications for the magnetic C_{4} phase and the neighboring C_{2} and superconducting phases.

18.
J Org Chem ; 82(19): 10398-10407, 2017 10 06.
Article in English | MEDLINE | ID: mdl-28853882

ABSTRACT

Efficient energy storage and release are two major challenges of solar energy harvesting technologies. The development of molecular solar thermal systems presents one approach to address these issues by tuning the isomerization reactions of photo/thermoswitches. Here we show that the incorporation of photoswitches into macrocyclic structures is a particularly attractive solution for increasing the storage time. We present the synthesis and properties of a series of macrocycles incorporating two dihydroazulene (DHA) photoswitching subunits, bridged by linkers of varying chain length. Independent of ring size, all macrocycles exhibit stepwise, light-induced, ring-opening reactions (DHA-DHA to DHA-VHF to VHF-VHF; VHF = vinylheptafulvene) with the first DHA undergoing isomerization with a similar efficiency as the uncyclized parent system while the second (DHA-VHF to VHF-VHF) is significantly slower. The energy-releasing, VHF-to-DHA, ring closures also occur in a stepwise manner and are systematically found to proceed slower in the more strained (smaller) cycles, but in all cases with a remarkably slow conversion of the second VHF to DHA. We managed to increase the half-life of the second VHF-to-DHA conversion from 65 to 202 h at room temperature by simply decreasing the ring size. A computational study reveals the smallest macrocycle to have the most energetic VHF-VHF state and hence highest energy density.

19.
J Phys Chem A ; 120(49): 9782-9793, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27973809

ABSTRACT

We have investigated the effects of substituents on the properties of the dihydroazulene/vinylheptafulvene photoswitch. The focus is on the changes of the thermochemical properties by placing electron withdrawing and donating groups on the monocyano and dicyano structures of the parent dihydroazulene and vinylheptafulvene compounds. We wish to increase the energy storage capacity, that is, the energy difference between the dihydroazulene and vinylheptafulvene isomers, of the photoswitch by computational molecular design and have performed over 9000 electronic structure calculations using density functional theory. Based on these calculations, we obtain design rules for how to increase the energy storage capacity of the photoswitch. Furthermore, we have investigated how the activation energy for the thermally induced vinylheptafulvene to dihydroazulene conversion depends on the substitution pattern, and based on these results, we have outlined molecular design considerations for obtaining new desired target structures exhibiting long energy storage times. Selected candidate systems have also been investigated in terms of optical properties to elucidate how sensitive the absorption maxima are to the functionalizations.

20.
Sci Rep ; 6: 36578, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27874044

ABSTRACT

We report the discovery of a new fluoride-arsenide bulk diluted magnetic semiconductor (Ba,K)F(Zn,Mn)As with the tetragonal ZrCuSiAs-type structure which is identical to that of the "1111" iron-based superconductors. The joint hole doping via (Ba,K) substitution &spin doping via (Zn,Mn) substitution results in ferromagnetic order with Curie temperature up to 30 K and demonstrates that the ferromagnetic interactions between the localized spins are mediated by the carriers. Muon spin relaxation measurements confirm the intrinsic nature of the long range magnetic order in the entire volume in the ferromagnetic phase. This is the first time that a diluted magnetic semiconductor with decoupled spin and charge doping is achieved in a fluoride compound. Comparing to the isostructure oxide counterpart of LaOZnSb, the fluoride DMS (Ba,K)F(Zn,Mn)As shows much improved semiconductive behavior that would be benefit for further application developments.

SELECTION OF CITATIONS
SEARCH DETAIL
...