Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Commun Biol ; 7(1): 566, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745065

ABSTRACT

Quinolone synthase from Aegle marmelos (AmQNS) is a type III polyketide synthase that yields therapeutically effective quinolone and acridone compounds. Addressing the structural and molecular underpinnings of AmQNS and its substrate interaction in terms of its high selectivity and specificity can aid in the development of numerous novel compounds. This paper presents a high-resolution AmQNS crystal structure and explains its mechanistic role in synthetic selectivity. Additionally, we provide a model framework to comprehend structural constraints on ketide insertion and postulate that AmQNS's steric and electrostatic selectivity plays a role in its ability to bind to various core substrates, resulting in its synthetic diversity. AmQNS prefers quinolone synthesis and can accommodate large substrates because of its wide active site entrance. However, our research suggests that acridone is exclusively synthesized in the presence of high malonyl-CoA concentrations. Potential implications of functionally relevant residue mutations were also investigated, which will assist in harnessing the benefits of mutations for targeted polyketide production. The pharmaceutical industry stands to gain from these findings as they expand the pool of potential drug candidates, and these methodologies can also be applied to additional promising enzymes.


Subject(s)
Quinolones , Substrate Specificity , Quinolones/chemistry , Quinolones/metabolism , Catalytic Domain , Models, Molecular , Polyketide Synthases/chemistry , Polyketide Synthases/metabolism , Polyketide Synthases/genetics , Crystallography, X-Ray , Protein Conformation
2.
Proc Natl Acad Sci U S A ; 121(15): e2321759121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38579009

ABSTRACT

Adjacent plant cells are connected by specialized cell wall regions, called middle lamellae, which influence critical agricultural characteristics, including fruit ripening and organ abscission. Middle lamellae are enriched in pectin polysaccharides, specifically homogalacturonan (HG). Here, we identify a plant-specific Arabidopsis DUF1068 protein, called NKS1/ELMO4, that is required for middle lamellae integrity and cell adhesion. NKS1 localizes to the Golgi apparatus and loss of NKS1 results in changes to Golgi structure and function. The nks1 mutants also display HG deficient phenotypes, including reduced seedling growth, changes to cell wall composition, and tissue integrity defects. These phenotypes are comparable to qua1 and qua2 mutants, which are defective in HG biosynthesis. Notably, genetic interactions indicate that NKS1 and the QUAs work in a common pathway. Protein interaction analyses and modeling corroborate that they work together in a stable protein complex with other pectin-related proteins. We propose that NKS1 is an integral part of a large pectin synthesis protein complex and that proper function of this complex is important to support Golgi structure and function.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Adhesion/genetics , Pectins/metabolism , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , Cell Wall/metabolism
3.
Plant Physiol ; 194(2): 1204-1217, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-37823515

ABSTRACT

In the model plant Arabidopsis (Arabidopsis thaliana), the absence of the essential macro-nutrient phosphate reduces primary root growth through decreased cell division and elongation, requiring alterations to the polysaccharide-rich cell wall surrounding the cells. Despite its importance, the regulation of cell wall synthesis in response to low phosphate levels is not well understood. In this study, we show that plants increase cellulose synthesis in roots under limiting phosphate conditions, which leads to changes in the thickness and structure of the cell wall. These changes contribute to the reduced growth of primary roots in low-phosphate conditions. Furthermore, we found that the cellulose synthase complex (CSC) activity at the plasma membrane increases during phosphate deficiency. Moreover, we show that this increase in the activity of the CSC is likely due to alterations in the phosphorylation status of cellulose synthases in low-phosphate conditions. Specifically, phosphorylation of CELLULOSE SYNTHASE 1 (CESA1) at the S688 site decreases in low-phosphate conditions. Phosphomimic versions of CESA1 with an S688E mutation showed significantly reduced cellulose induction and primary root length changes in low-phosphate conditions. Protein structure modeling suggests that the phosphorylation status of S688 in CESA1 could play a role in stabilizing and activating the CSC. This mechanistic understanding of root growth regulation under limiting phosphate conditions provides potential strategies for changing root responses to soil phosphate content.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Phosphates/metabolism , Arabidopsis/metabolism , Mutation , Cellulose/metabolism , Plant Roots/genetics , Plant Roots/metabolism
4.
5.
Cytoskeleton (Hoboken) ; 80(11-12): 404-436, 2023.
Article in English | MEDLINE | ID: mdl-37578201

ABSTRACT

Microtubules (MTs) represent one of the main components of the eukaryotic cytoskeleton and support numerous critical cellular functions. MTs are in principle tube-like structures that can grow and shrink in a highly dynamic manner; a process largely controlled by microtubule-associated proteins (MAPs). Plant MAPs are a phylogenetically diverse group of proteins that nonetheless share many common biophysical characteristics and often contain large stretches of intrinsic protein disorder. These intrinsically disordered regions are determinants of many MAP-MT interactions, in which structural flexibility enables low-affinity protein-protein interactions that enable a fine-tuned regulation of MT cytoskeleton dynamics. Notably, intrinsic disorder is one of the major obstacles in functional and structural studies of MAPs and represents the principal present-day challenge to decipher how MAPs interact with MTs. Here, we review plant MAPs from an intrinsic protein disorder perspective, by providing a complete and up-to-date summary of all currently known members, and address the current and future challenges in functional and structural characterization of MAPs.


Subject(s)
Microtubule-Associated Proteins , Microtubules , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Cytoskeleton/metabolism
7.
Mol Plant ; 16(1): 206-231, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36564945

ABSTRACT

All plant cells are surrounded by a cell wall that provides cohesion, protection, and a means of directional growth to plants. Cellulose microfibrils contribute the main biomechanical scaffold for most of these walls. The biosynthesis of cellulose, which typically is the most prominent constituent of the cell wall and therefore Earth's most abundant biopolymer, is finely attuned to developmental and environmental cues. Our understanding of the machinery that catalyzes and regulates cellulose biosynthesis has substantially improved due to recent technological advances in, for example, structural biology and microscopy. Here, we provide a comprehensive overview of the structure, function, and regulation of the cellulose synthesis machinery and its regulatory interactors. We aim to highlight important knowledge gaps in the field, and outline emerging approaches that promise a means to close those gaps.


Subject(s)
Embryophyta , Cellulose , Plants , Cell Wall , Glucosyltransferases
8.
Biomolecules ; 12(2)2022 01 24.
Article in English | MEDLINE | ID: mdl-35204695

ABSTRACT

Lytic Polysaccharide Monooxygenases (LPMOs) oxidatively cleave recalcitrant polysaccharides. The mechanism involves (i) reduction of the Cu, (ii) polysaccharide binding, (iii) binding of different oxygen species, and (iv) glycosidic bond cleavage. However, the complete mechanism is poorly understood and may vary across different families and even within the same family. Here, we have investigated the protonation state of a secondary co-ordination sphere histidine, conserved across AA9 family LPMOs that has previously been proposed to be a potential proton donor. Partial unrestrained refinement of newly obtained higher resolution data for two AA9 LPMOs and re-refinement of four additional data sets deposited in the PDB were carried out, where the His was refined without restraints, followed by measurements of the His ring geometrical parameters. This allowed reliable assignment of the protonation state, as also validated by following the same procedure for the His brace, for which the protonation state is predictable. The study shows that this histidine is generally singly protonated at the Nε2 atom, which is close to the oxygen species binding site. Our results indicate robustness of the method. In view of this and other emerging evidence, a role as proton donor during catalysis is unlikely for this His.


Subject(s)
Histidine , Mixed Function Oxygenases , Binding Sites , Histidine/chemistry , Humans , Mixed Function Oxygenases/metabolism , Polysaccharides/chemistry
9.
New Phytol ; 232(3): 1337-1349, 2021 11.
Article in English | MEDLINE | ID: mdl-34389999

ABSTRACT

Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes of industrial and biological importance. In particular, LPMOs play important roles in fungal lifestyle. No inhibitors of LPMOs have yet been reported. In this study, a diverse library of 100 plant extracts was screened for LPMO activity-modulating effects. By employing protein crystallography and LC-MS, we successfully identified a natural LPMO inhibitor. Extract screening revealed a significant LPMO inhibition by methanolic extract of Cinnamomum cassia (cinnamon), which inhibited LsAA9A LPMO from Lentinus similis in a concentration-dependent manner. With a notable exception, other microbial LPMOs from families AA9 and AA10 were also inhibited by this cinnamon extract. The polyphenol cinnamtannin B1 was identified as the inhibitory component by crystallography. Cinnamtannin B1 was bound to the surface of LsAA9A at two distinct binding sites: one close to the active site and another at a pocket on the opposite side of the protein. Independent characterization of cinnamon extract by LC-MS and subsequent activity measurements confirmed that the compound inhibiting LsAA9A was cinnamtannin B1. The results of this study show that specific natural LPMO inhibitors of plant origin exist in nature, providing the opportunity for future exploitation of such compounds within various biotechnological contexts.


Subject(s)
Mixed Function Oxygenases , Plant Extracts , Fungal Proteins , Lentinula , Plant Extracts/pharmacology , Polysaccharides
10.
J Biol Chem ; 296: 100086, 2021.
Article in English | MEDLINE | ID: mdl-33199373

ABSTRACT

Understanding enzymatic breakdown of plant biomass is crucial to develop nature-inspired biotechnological processes. Lytic polysaccharide monooxygenases (LPMOs) are microbial enzymes secreted by fungal saprotrophs involved in carbon recycling. LPMOs modify biomass by oxidatively cleaving polysaccharides, thereby enhancing the efficiency of glycoside hydrolases. Fungal AA9 LPMOs are active on cellulose, but some members also display activity on hemicelluloses and/or oligosaccharides. Although the active site subsites are well defined for a few model LPMOs, the molecular determinants driving broad substrate specificity are still not easily predictable. Based on bioinformatic clustering and sequence alignments, we selected seven fungal AA9 LPMOs that differ in the amino-acid residues constituting their subsites. Investigation of their substrate specificities revealed that all these LPMOs are active on cellulose and cello-oligosaccharides, as well as plant cell wall-derived hemicellulosic polysaccharides, and carry out C4 oxidative cleavage. The product profiles from cello-oligosaccharide degradation suggest that the subtle differences in amino-acid sequence within the substrate-binding loop regions lead to different preferred binding modes. Our functional analyses allowed us to probe the molecular determinants of substrate binding within two AA9 LPMO subclusters. Many wood-degrading fungal species rich in AA9 genes have at least one AA9 enzyme with structural loop features that allow recognition of short ß-(1,4)-linked glucan chains. Time-course monitoring of these AA9 LPMOs on cello-oligosaccharides also provides a useful model system for mechanistic studies of LPMO catalysis. These results are valuable for the understanding of LPMO contribution to wood decaying process in nature and for the development of sustainable biorefineries.


Subject(s)
Cell Wall/metabolism , Cellulose/metabolism , Mixed Function Oxygenases/metabolism , Cell Wall/chemistry , Computational Biology , Fungi/enzymology , Fungi/metabolism , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Substrate Specificity
11.
Biochemistry ; 59(36): 3347-3358, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32818374

ABSTRACT

Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that cleave polysaccharide substrates oxidatively. First discovered because of their action on recalcitrant crystalline substrates (chitin and cellulose), a number of LPMOs are now reported to act on soluble substrates, including oligosaccharides. However, crystallographic complexes with oligosaccharides have been reported for only a single LPMO so far, an enzyme from the basidiomycete fungus Lentinus similis (LsAA9_A). Here we present a more detailed comparative study of LsAA9_A and an LPMO from the ascomycete fungus Collariella virescens (CvAA9_A) with which it shares 41.5% sequence identity. LsAA9_A is considerably more thermostable than CvAA9_A, and the structural basis for the difference has been investigated. We have compared the patterns of oligosaccharide cleavage and the patterns of binding in several new crystal structures explaining the basis for the product preferences of the two enzymes. Obtaining structural information about complexes of LPMOs with carbohydrates has proven to be very difficult in general judging from the structures reported in the literature thus far, and this can be attributed only partly to the low affinity for small substrates. We have thus evaluated the use of differential scanning fluorimetry as a guide to obtaining complex structures. Furthermore, an analysis of crystal packing of LPMOs and glycoside hydrolases corroborates the hypothesis that active site occlusion is a very significant problem for LPMO-substrate interaction analysis by crystallography, due to their relatively flat and extended substrate binding sites.


Subject(s)
Fungal Proteins/metabolism , Lentinula/enzymology , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/metabolism , Oligosaccharides/metabolism , Sordariales/enzymology , Temperature , Binding Sites , Catalytic Domain , Crystallization , Crystallography, X-Ray , Enzyme Stability , Fungal Proteins/chemistry , Oxidation-Reduction , Protein Conformation , Substrate Specificity
12.
Nat Chem Biol ; 16(3): 345-350, 2020 03.
Article in English | MEDLINE | ID: mdl-31932718

ABSTRACT

Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that play a key role in the oxidative degradation of various biopolymers such as cellulose and chitin. While hunting for new LPMOs, we identified a new family of proteins, defined here as X325, in various fungal lineages. The three-dimensional structure of X325 revealed an overall LPMO fold and a His brace with an additional Asp ligand to Cu(II). Although LPMO-type activity of X325 members was initially expected, we demonstrated that X325 members do not perform oxidative cleavage of polysaccharides, establishing that X325s are not LPMOs. Investigations of the biological role of X325 in the ectomycorrhizal fungus Laccaria bicolor revealed exposure of the X325 protein at the interface between fungal hyphae and tree rootlet cells. Our results provide insights into a family of copper-containing proteins, which is widespread in the fungal kingdom and is evolutionarily related to LPMOs, but has diverged to biological functions other than polysaccharide degradation.


Subject(s)
Copper/metabolism , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/metabolism , Binding Sites , Cellulose/metabolism , Chitin/metabolism , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Fungi/metabolism , Mixed Function Oxygenases/ultrastructure , Oxidation-Reduction , Phylogeny , Polysaccharides/metabolism
13.
J Biol Chem ; 294(45): 17117-17130, 2019 11 08.
Article in English | MEDLINE | ID: mdl-31471321

ABSTRACT

Lytic polysaccharide monooxygenases (LPMOs) are redox-enzymes involved in biomass degradation. All characterized LPMOs possess an active site of two highly conserved histidine residues coordinating a copper ion (the histidine brace), which are essential for LPMO activity. However, some protein sequences that belong to the AA9 LPMO family display a natural N-terminal His to Arg substitution (Arg-AA9). These are found almost entirely in the phylogenetic fungal class Agaricomycetes, associated with wood decay, but no function has been demonstrated for any Arg-AA9. Through bioinformatics, transcriptomic, and proteomic analyses we present data, which suggest that Arg-AA9 proteins could have a hitherto unidentified role in fungal degradation of lignocellulosic biomass in conjunction with other secreted fungal enzymes. We present the first structure of an Arg-AA9, LsAA9B, a naturally occurring protein from Lentinus similis The LsAA9B structure reveals gross changes in the region equivalent to the canonical LPMO copper-binding site, whereas features implicated in carbohydrate binding in AA9 LPMOs have been maintained. We obtained a structure of LsAA9B with xylotetraose bound on the surface of the protein although with a considerably different binding mode compared with other AA9 complex structures. In addition, we have found indications of protein phosphorylation near the N-terminal Arg and the carbohydrate-binding site, for which the potential function is currently unknown. Our results are strong evidence that Arg-AA9s function markedly different from canonical AA9 LPMO, but nonetheless, may play a role in fungal conversion of lignocellulosic biomass.


Subject(s)
Histidine , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/metabolism , Polysaccharides/metabolism , Amino Acid Motifs , Amino Acid Sequence , Amino Acid Substitution , Binding Sites , Ligands , Mixed Function Oxygenases/genetics , Models, Molecular , Phosphorylation , Phylogeny
14.
Biochem Soc Trans ; 46(6): 1431-1447, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30381341

ABSTRACT

Lytic polysaccharide monooxygenases (LPMOs) are copper enzymes discovered within the last 10 years. By degrading recalcitrant substrates oxidatively, these enzymes are major contributors to the recycling of carbon in nature and are being used in the biorefinery industry. Recently, two new families of LPMOs have been defined and structurally characterized, AA14 and AA15, sharing many of previously found structural features. However, unlike most LPMOs to date, AA14 degrades xylan in the context of complex substrates, while AA15 is particularly interesting because they expand the presence of LPMOs from the predominantly microbial to the animal kingdom. The first two neutron crystallography structures have been determined, which, together with high-resolution room temperature X-ray structures, have putatively identified oxygen species at or near the active site of LPMOs. Many recent computational and experimental studies have also investigated the mechanism of action and substrate-binding mode of LPMOs. Perhaps, the most significant recent advance is the increasing structural and biochemical evidence, suggesting that LPMOs follow different mechanistic pathways with different substrates, co-substrates and reductants, by behaving as monooxygenases or peroxygenases with molecular oxygen or hydrogen peroxide as a co-substrate, respectively.


Subject(s)
Mixed Function Oxygenases/metabolism , Polysaccharides/metabolism , Animals , Cell Wall/metabolism , Crystallography, X-Ray , Mixed Function Oxygenases/chemistry , Oxidation-Reduction , Plants/chemistry , Plants/metabolism , Polysaccharides/chemistry , Substrate Specificity
15.
FEBS Lett ; 592(10): 1738-1750, 2018 05.
Article in English | MEDLINE | ID: mdl-29683476

ABSTRACT

Temperate bacteriophages are known for their bistability, which in TP901-1 is controlled by two proteins, CI and MOR. Clear 1 repressor (CI) is hexameric and binds three palindromic operator sites via an N-terminal helix-turn-helix domain (NTD). A dimeric form, such as the truncated CI∆58 investigated here, is necessary for high-affinity binding to DNA. The crystal structure of the dimerization region (CTD1 ) is determined here, showing that it forms a pair of helical hooks. This newly determined structure is used together with the known crystal structure of the CI-NTD and small angle X-ray scattering data, to determine the solution structure of CI∆58 in complex with a palindromic operator site, showing that the two NTDs bind on opposing sides of the DNA helix.


Subject(s)
Bacteriophages/metabolism , DNA, Viral/metabolism , Repressor Proteins/metabolism , Viral Proteins/metabolism , Circular Dichroism , Crystallography, X-Ray , DNA, Viral/chemistry , Dimerization , Protein Binding , Protein Conformation , Repressor Proteins/chemistry , Scattering, Small Angle , Viral Proteins/chemistry
16.
Nat Chem Biol ; 14(3): 306-310, 2018 03.
Article in English | MEDLINE | ID: mdl-29377002

ABSTRACT

Wood biomass is the most abundant feedstock envisioned for the development of modern biorefineries. However, the cost-effective conversion of this form of biomass into commodity products is limited by its resistance to enzymatic degradation. Here we describe a new family of fungal lytic polysaccharide monooxygenases (LPMOs) prevalent among white-rot and brown-rot basidiomycetes that is active on xylans-a recalcitrant polysaccharide abundant in wood biomass. Two AA14 LPMO members from the white-rot fungus Pycnoporus coccineus substantially increase the efficiency of wood saccharification through oxidative cleavage of highly refractory xylan-coated cellulose fibers. The discovery of this unique enzyme activity advances our knowledge on the degradation of woody biomass in nature and offers an innovative solution for improving enzyme cocktails for biorefinery applications.


Subject(s)
Basidiomycota/enzymology , Biomass , Mixed Function Oxygenases/chemistry , Polysaccharides/chemistry , Wood/microbiology , Biodegradation, Environmental , Biotechnology/economics , Biotechnology/methods , Cellulose/chemistry , Computational Biology , Cost-Benefit Analysis , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Genomics , Glycosylation , Oxygen/chemistry , Phylogeny , Substrate Specificity , Transcriptome , Xylans/chemistry
17.
Carbohydr Res ; 448: 187-190, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28364950

ABSTRACT

Lytic polysaccharide monooxygenases (LPMOs) have been found to be key components in microbial (bacterial and fungal) degradation of biomass. They are copper metalloenzymes that degrade polysaccharides oxidatively and act in synergy with glycoside hydrolases. Recently crystallographic studies carried out at pH 5.5 of the LPMO from Lentinus similis belonging to the fungal LPMO family AA9 have provided the first atomic resolution view of substrate-LPMO interactions. The LsAA9A structure presented here determined at pH 3.5 shows significant disorder of the active site in the absence of substrate ligand. Furthermore some differences are also observed in regards to substrate (cellohexaose) binding, although the major interaction with the N-terminal histidine remains unchanged.


Subject(s)
Mixed Function Oxygenases/metabolism , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Catalytic Domain , Hydrogen-Ion Concentration , Lentinula/enzymology , Ligands , Mixed Function Oxygenases/chemistry , Models, Molecular , Oxidation-Reduction , Substrate Specificity
18.
Acta Crystallogr D Struct Biol ; 73(Pt 1): 64-76, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-28045386

ABSTRACT

Lytic polysaccharide monooxygenases (LPMOs) are a class of copper-dependent enzymes discovered within the last ten years. They oxidatively cleave polysaccharides (chitin, lignocellulose, hemicellulose and starch-derived), presumably making recalcitrant substrates accessible to glycoside hydrolases. Recently, the first crystal structure of an LPMO-substrate complex was reported, giving insights into the interaction of LPMOs with ß-linked substrates (Frandsen et al., 2016). The LPMOs acting on α-linked glycosidic bonds (family AA13) display binding surfaces that are quite different from those of LPMOs that act on ß-linked glycosidic bonds (families AA9-AA11), as revealed from the first determined structure (Lo Leggio et al., 2015), and thus presumably the AA13s interact with their substrate in a distinct fashion. Here, several new structures of the same AA13 enzyme, Aspergillus oryzae AA13, are presented. Crystals obtained in the presence of high zinc-ion concentrations were used, as they can be obtained more reproducibly than those used to refine the deposited copper-containing structure. One structure with an ordered zinc-bound active site was solved at 1.65 Šresolution, and three structures from crystals soaked with maltooligosaccharides in solutions devoid of zinc ions were solved at resolutions of up to 1.10 Å. Despite similar unit-cell parameters, small rearrangements in the crystal packing occur when the crystals are depleted of zinc ions, resulting in a more occluded substrate-binding surface. In two of the three structures maltooligosaccharide ligands are bound, but not at the active site. Two of the structures presented show a His-ligand conformation that is incompatible with metal-ion binding. In one of these structures this conformation is the principal one (80% occupancy), giving a rare atomic resolution view of a substantially misfolded enzyme that is presumably rendered inactive.

19.
IUCrJ ; 3(Pt 6): 448-467, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27840684

ABSTRACT

Lytic polysaccharide monooxygenases (LPMOs) are a new class of microbial copper enzymes involved in the degradation of recalcitrant polysaccharides. They have only been discovered and characterized in the last 5-10 years and have stimulated strong interest both in biotechnology and in bioinorganic chemistry. In biotechnology, the hope is that these enzymes will finally help to make enzymatic biomass conversion, especially of lignocellulosic plant waste, economically attractive. Here, the role of LPMOs is likely to be in attacking bonds that are not accessible to other enzymes. LPMOs have attracted enormous interest since their discovery. The emphasis in this review is on the past and present contribution of crystallographic studies as a guide to functional understanding, with a final look towards the future.

20.
Sci Rep ; 6: 29574, 2016 07 12.
Article in English | MEDLINE | ID: mdl-27403839

ABSTRACT

The CI repressor from the temperate bacteriophage TP901-1 consists of two folded domains, an N-terminal helix-turn-helix DNA-binding domain (NTD) and a C-terminal oligomerization domain (CTD), which we here suggest to be further divided into CTD1 and CTD2. Full-length CI is a hexameric protein, whereas a truncated version, CI∆58, forms dimers. We identify the dimerization region of CI∆58 as CTD1 and determine its secondary structure to be helical both within the context of CI∆58 and in isolation. To our knowledge this is the first time that a helical dimerization domain has been found in a phage repressor. We also precisely determine the length of the flexible linker connecting the NTD to the CTD. Using electrophoretic mobility shift assays and native mass spectrometry, we show that CI∆58 interacts with the OL operator site as one dimer bound to both half-sites, and with much higher affinity than the isolated NTD domain thus demonstrating cooperativity between the two DNA binding domains. Finally, using small angle X-ray scattering data and state-of-the-art ensemble selection techniques, we delineate the conformational space sampled by CI∆58 in solution, and we discuss the possible role that the dynamics play in CI-repressor function.


Subject(s)
Bacteriophages/chemistry , Repressor Proteins/chemistry , Viral Regulatory and Accessory Proteins/chemistry , Amino Acid Sequence , Binding Sites , DNA/chemistry , DNA-Binding Proteins/chemistry , Models, Molecular , Protein Structure, Secondary , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...