Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Mol Cell Res ; 1868(9): 119078, 2021 08.
Article in English | MEDLINE | ID: mdl-34118277

ABSTRACT

Prominent inclusion bodies can develop in the endoplasmic reticulum (ER) when overexpressed antibodies possess intrinsically high condensation propensities. These observations suggest that antibodies deemed to show notable solubility problems may reveal such characteristics preemptively in the form of ER-associated inclusion bodies during antibody overexpression. To define the relationships between solubility problems and inclusion body phenotypes, we investigated the biosynthesis of a model human IgG2λ that shows severe opalescence in an acidic formulation buffer yet retains high solubility at physiological pH. Consistent with the pH-dependent solubility characteristics, the model antibody did not induce notable inclusion body in the physiological pH environment of the ER lumen. However, when individual subunit chains of the antibody were expressed separately, the light chain (LC) spontaneously induced notable crystal-like inclusion bodies in the ER. The LC crystallization event was readily reproducible in vitro by simply concentrating the purified LC protein at physiological pH. Two independent structural determinants for the LC crystallization were identified through rational mutagenesis approach by monitoring the effect of amino acid substitutions on intracellular LC crystallogenesis. The effect of mutations on crystallization was also recapitulated in vitro using purified LC proteins. Importantly, when introduced directly into the model antibody, a mutation that prevents the LC crystallization remediated the antibody's solubility problem without compromising the secretory output or antigen binding. These results illustrate that the ER can serve as a "physiological test tube" that not only reports secretory cargo's high condensation propensity at physiological pH, but also provides an orthogonal method that guides antibody engineering strategy.


Subject(s)
Immunoglobulin lambda-Chains/chemistry , Cells, Cultured , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Immunoglobulin lambda-Chains/genetics , Immunoglobulin lambda-Chains/immunology , Models, Molecular , Protein Conformation , Solubility
2.
J Pharm Sci ; 102(6): 1701-1711, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23559428

ABSTRACT

Human immunoglobulin G1 (IgG1) and immunoglobulin G2 (IgG2) antibodies contain multiple disulfide bonds, which are an integral part of the structure and stability of the protein. Open disulfide bonds have been detected in a number of therapeutic and serum derived antibodies. This report details a method that fluorescently labels free cysteine residues, quantifies, and identifies the proteolytic fragments by liquid chromatography coupled to online mass spectrometry. The majority of the open disulfide bonds in recombinant and serum derived IgG1 and IgG2 antibodies were in the constant domains. This method was applied to the identification of cysteines in an IgG2 antibody that are involved in the formation of covalent intermolecular bonds because of the application of a severe agitation stress. The free cysteine in the CH 1 domain of the IgG2 decreased upon application of the stress and implicates open disulfide bonds in this domain as the likely source of free cysteines involved in the formation of intermolecular disulfide bonds. The presence of comparable levels of open disulfide bonds in recombinant and endogenous antibodies suggests that open disulfide bonds are an inherent feature of antibodies and that the susceptibility of intermolecular disulfide bond formation is similar for recombinant and serum-derived IgG antibodies.


Subject(s)
Cysteine/analysis , Immunoglobulin G/chemistry , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Disulfides/analysis , Humans , Mass Spectrometry , Protein Conformation , Protein Folding , Protein Stability , Recombinant Proteins/chemistry , Stress, Mechanical
3.
J Biol Chem ; 286(22): 19917-31, 2011 Jun 03.
Article in English | MEDLINE | ID: mdl-21464137

ABSTRACT

Protein synthesis and secretion are essential to cellular life. Although secretory activities may vary in different cell types, what determines the maximum secretory capacity is inherently difficult to study. Increasing protein synthesis until reaching the limit of secretory capacity is one strategy to address this key issue. Under highly optimized growth conditions, recombinant CHO cells engineered to produce a model human IgG clone started housing rod-shaped crystals in the endoplasmic reticulum (ER) lumen. The intra-ER crystal growth was accompanied by cell enlargement and multinucleation and continued until crystals outgrew cell size to breach membrane integrity. The intra-ER crystals were composed of correctly folded, endoglycosidase H-sensitive IgG. Crystallizing propensity was due to the intrinsic physicochemical properties of the model IgG, and the crystallization was reproduced in vitro by exposing a high concentration of IgG to a near neutral pH. The striking cellular phenotype implicated the efficiency of IgG protein synthesis and oxidative folding exceeded the capacity of ER export machinery. As a result, export-ready IgG accumulated progressively in the ER lumen until a threshold concentration was reached to nucleate crystals. Using an in vivo system that reports accumulation of correctly folded IgG, we showed that the ER-to-Golgi transport steps became rate-limiting in cells with high secretory activity.


Subject(s)
Endoplasmic Reticulum/metabolism , Gene Expression , Immunoglobulin G/biosynthesis , Protein Folding , Recombinant Proteins/biosynthesis , Animals , CHO Cells , Cricetinae , Cricetulus , Endoplasmic Reticulum/genetics , Humans , Hydrogen-Ion Concentration , Immunoglobulin G/genetics , Recombinant Proteins/genetics
4.
Protein Sci ; 19(9): 1601-15, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20556807

ABSTRACT

Aggregation of human therapeutic antibodies represents a significant hurdle to product development. In a test across multiple antibodies, it was observed that IgG1 antibodies aggregated less, on average, than IgG2 antibodies under physiological pH and mildly elevated temperature. This phenomenon was also observed for IgG1 and IgG2 subclasses of anti-streptavidin, which shared 95% sequence identity but varied in interchain disulfide connectivity. To investigate the structural and covalent changes associated with greater aggregation in IgG2 subclasses, soluble aggregates from the two forms of anti-streptavidin were isolated and characterized. Sedimentation velocity analytical ultracentrifugation (SV-AUC) measurements confirmed that the aggregates were present in solution, and revealed that the IgG1 aggregate was composed of a predominant species, whereas the IgG2 aggregate was heterogeneous. Tertiary structural changes accompanied antibody aggregation as evidenced by greater ANS (8-Anilino-1-naphthalene sulfonic acid) binding to the aggregates over monomer, and differences in disulfide character and tryptophan environments between monomer, oligomer and aggregate species, as observed by near-UV circular dichroism (CD). Differences between subclasses were observed in the secondary structural changes that accompanied aggregation, particularly in the intermolecular ß-sheet and turn structures between the monomer and aggregate species. Free thiol determination showed ∼2.4-fold lower quantity of free cysteines in the IgG1 subclass, consistent with the 2.4-fold reduction in aggregation of the IgG1 form when compared with IgG2 under these conditions. These observations suggested an important role for disulfide bond formation, as well as secondary and tertiary structural transitions, during antibody aggregation. Such degradations may be minimized using appropriate formulation conditions.


Subject(s)
Immunoglobulin G/chemistry , Amino Acid Sequence , Circular Dichroism , Humans , Immunoglobulin G/immunology , Immunoglobulin G/isolation & purification , Protein Conformation , Protein Structure, Secondary , Streptavidin/immunology , Sulfhydryl Compounds/chemistry , Ultracentrifugation
SELECTION OF CITATIONS
SEARCH DETAIL
...