Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Inorg Chem ; 29(1): 51-73, 2024 02.
Article in English | MEDLINE | ID: mdl-38099936

ABSTRACT

Platinum-based drugs are widely recognized efficient anti-tumor agents, but faced with multiple undesirable effects. Here, four dinuclear platinum(II) complexes, [{Pt(1,2-pn)Cl}2(µ-pydz)]Cl2 (C1), [{Pt(ibn)Cl}2(µ-pydz)]Cl2 (C2), [{Pt(1,3-pn)Cl}2(µ-pydz)]Cl2 (C3) and [{Pt(1,3-pnd)Cl}2(µ-pydz)]Cl2 (C4), were designed (pydz is pyridazine, 1,2-pn is ( ±)-1,2-propylenediamine, ibn is 1,2-diamino-2-methylpropane, 1,3-pn is 1,3-propylenediamine, and 1,3-pnd is 1,3-pentanediamine). Interactions and binding ability of C1-C4 complexes with calf thymus DNA (CT-DNA) has been monitored by viscosity measurements, UV-Vis, fluorescence emission spectroscopy and molecular docking. Binding affinities of C1-C4 complexes to the bovine serum albumin (BSA) has been monitored by fluorescence emission spectroscopy. The tested complexes exhibit variable cytotoxicity toward different mouse and human tumor cell lines. C2 shows the most potent cytotoxicity, especially against mouse (4T1) and human (MDA-MD468) breast cancer cells in the dose- and time-dependent manner. C2 induces 4T1 and MDA-MD468 cells apoptosis, further documented by the accumulation of cells at sub-G1 phase of cell cycle and increase of executive caspase 3 and caspase 9 levels in 4T1 cells. C2 exhibits anti-proliferative effect through the reduction of cyclin D3 and cyclin E expression and elevation of inhibitor p27 level. Also, C2 downregulates c-Myc and phosphorylated AKT, oncogenes involved in the control of tumor cell proliferation and death. In order to measure the amount of platinum(II) complexes taken up by the cells, the cellular platinum content were quantified. However, C2 failed to inhibit mouse breast cancer growth in vivo. Chemical modifications of tested platinum(II) complexes might be a valuable approach for the improvement of their anti-tumor activity, especially effects in vivo.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Coordination Complexes , Pyridazines , Humans , Animals , Mice , Female , Platinum/pharmacology , Platinum/chemistry , Serum Albumin, Bovine/chemistry , Molecular Docking Simulation , Ligands , DNA/chemistry , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Pyridazines/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/chemistry
2.
J Inorg Biochem ; 231: 111773, 2022 06.
Article in English | MEDLINE | ID: mdl-35279446

ABSTRACT

Four Pt(II) complexes of the general formula [Pt(L)(5,6-epoxy-1,10-phen)], where L is an anion of either malonic acid (mal, Pt1), 2-methylmalonic acid (Me-mal, Pt2), 2,2-dimethylmalonic acid (Me2-mal, Pt3) or 1,1-cyclobutanedicarboxylic acid (CBDCA, Pt4) and 5,6-epoxy-1,10-phen is 5,6-epoxy-5,6-dihydro-1,10-phenanthroline, were synthesized and characterized by elemental microanalysis and different spectroscopic techniques. The crystal structure of anhydrous Pt3 complex was determined by single crystal X-ray diffraction. The in vitro anticancer activity of the platinum(II) complexes was investigated in human and murine cancer cell lines as well as in a normal murine cell line by MTT assay. The results show that the investigated platinum(II) complexes exhibit potent cytotoxic activity against murine breast carcinoma cells (4T1), human (HCT116) and murine (CT26) colorectal carcinoma cells. The Pt3 complex shows stronger selectivity against cancer cells compared to other platinum(II) complexes tested and thus exhibits beneficial antitumor activity, mainly by inducing apoptosis and inhibiting cell proliferation and migration. The Pt3 complex also exhibits significant in vivo antitumor activity in the orthotopical 4T1 tumor model without detected liver, kidney, lung, and heart toxicity. All the results indicate that these novel platinum(II) complexes have good antitumor activity on breast and colorectal cancer and have the potential to become possible candidates for cancer treatment.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Coordination Complexes/chemistry , Drug Screening Assays, Antitumor , Humans , Malonates/pharmacology , Mice , Platinum/chemistry , Platinum/pharmacology
3.
J Biol Inorg Chem ; 27(1): 65-79, 2022 02.
Article in English | MEDLINE | ID: mdl-34714401

ABSTRACT

The mechanism of action of most approved drugs in use today is based on their binding to specific proteins or DNA. One of the achievements of this research is a new perspective for recognition of binding modes to DNA by monitoring of changes in measured and stoichiometric values of absorbance at 260 nm. UV-Vis and IR spectroscopy, gel electrophoresis and docking study were used for investigation of binding properties of three dinuclear platinum(II) complexes containing different pyridine-based bridging ligands, [{Pt(en)Cl}2(µ-4,4'-bipy)]Cl2·2H2O (Pt1), [{Pt(en)Cl}2(µ-bpa)]Cl2·4H2O (Pt2) and [{Pt(en)Cl}2(µ-bpe)]Cl2·4H2O (Pt3) to DNA (4,4'-bipy, bpa and bpe are 4,4'-bipyridine, 1,2-bis(4-pyridyl)ethane and 1,2-bis(4-pyridyl)ethene, respectively). In contrast to the system with well-known intercalated ligand (EtBr), covalently bound ligand (cis-Pt) and with minor groove binder (Hoechst 33258), which do not have significant differences in measured and stoichiometric values, the most pronounced deviations are recorded for two dinuclear platinum(II) complexes (Pt1 and Pt2), as a consequence of complex binding to the phosphate backbone and bending of DNA helix. The hydrolysis of complexes and changes in DNA conformation were also analysed as phenomena that may have an impact on the changes in absorbance.


Subject(s)
Antineoplastic Agents , Platinum , Antineoplastic Agents/chemistry , DNA/chemistry , Ligands , Phosphates , Platinum/chemistry
4.
J Inorg Biochem ; 210: 111158, 2020 09.
Article in English | MEDLINE | ID: mdl-32622215

ABSTRACT

Three new dinuclear palladium(II) complexes with general formula [{Pd(en)Cl}2(µ-L)]2+ (L is pyridine-based bridging ligand 4,4'-bipyridine (4,4'-bipy, 1), 1,2-bis(4-pyridyl)ethane (bpa, 2), 1,2-bis(4-pyridyl)ethylene (bpe, 3) and en is bidentate coordinated ethylenediamine) were synthesized and characterized by elemental microanalyses, NMR (1H and 13C), IR and UV-Vis spectroscopy. In vitro cytotoxic activity of these complexes against human A549 and murine LLC1 lung cancer cells, as well as two human HCT116 and SW480 and one murine CT26 colon cancer cells was investigated using MTT assay (MTT is 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide). The potential of complexes 1-3 to induce apoptosis was tested by flow cytometric analysis of Annexin V and propidium iodide stained treated cells, while their antiproliferative activity was analyzed by detection of Ki67 expression in treated cancer cells. The DNA binding affinity of complexes 1-3 was evaluated by UV-Vis, fluorescence emission spectroscopy and by viscosity measurements in aqueous phosphate buffer solution at pH 7.40. Furthermore, interaction of these complexes with bovine serum albumin was investigated by fluorescence spectrometry. The present study showed that the nature of pyridine-based bridging ligand (L) in dinuclear [{Pd(en)Cl}2(µ-L)]2+ complex has an influence on the complex preference for the cytotoxic activity and CT-DNA/BSA (CT-DNA is calf thymus DNA and BSA is bovine serum albumin) binding affinity.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , DNA/metabolism , Pyridines/pharmacology , Serum Albumin, Bovine/metabolism , Animals , Antineoplastic Agents/metabolism , Apoptosis/drug effects , Cattle , Cell Line, Tumor , Cell Proliferation/drug effects , Coordination Complexes/metabolism , Drug Screening Assays, Antitumor , Drug Stability , Humans , Ligands , Mice , Palladium/chemistry , Protein Binding , Pyridines/metabolism
5.
J Biol Inorg Chem ; 25(3): 395-409, 2020 05.
Article in English | MEDLINE | ID: mdl-32162071

ABSTRACT

New anticancer platinum(II) compounds simultaneously targeting tumor cells and tumor-derived neoangiogenesis, with new DNA interacting mode and large therapeutic window are appealing alternative to improve efficacy of clinical platinum chemotherapeutics. Herein, we describe three novel dinuclear [{Pt(en)Cl}2(µ-L)]2+ complexes with different pyridine-like bridging ligands (L), 4,4'-bipyridine (Pt1), 1,2-bis(4-pyridyl)ethane (Pt2) and 1,2-bis(4-pyridyl)ethene (Pt3), which highly, positively charged aqua derivatives, [{Pt(en)(H2O)}2(µ-L)]4+, interact with the phosphate backbone forming DNA-Pt adducts with an unique and previously undescribed binding mode, called a minor groove covering. The results of this study suggested that the new binding mode of the aqua-Pt(II) complexes with DNA could be attributed to the higher anticancer activities of their chloride analogues. All three compounds, particularly complex [{Pt(en)Cl}2(µ-4,4'-bipy)]Cl2·2H2O (4,4'-bipy is 4,4'-bipyridine) (Pt1), overcame cisplatin resistance in vivo in the zebrafish-mouse melanoma xenograft model, showed much higher therapeutic potential than antiangiogenic drug sunitinib malate, while effectively blocking tumor neovascularization and melanoma cell metastasis. Overall therapeutic profile showed new dinuclear Pt(II) complexes could be novel, effective and safe anticancer agents. Finally, the correlation with the structural characteristics of these complexes can serve as a useful tool for developing new and more effective anticancer drugs.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , DNA/chemistry , Neovascularization, Pathologic/drug therapy , Organoplatinum Compounds/pharmacology , Pyridines/pharmacology , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Binding Sites/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Ligands , Molecular Docking Simulation , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Organoplatinum Compounds/chemical synthesis , Organoplatinum Compounds/chemistry , Pyridines/chemistry , Viscosity , Zebrafish
6.
J Biol Inorg Chem ; 24(7): 1009-1022, 2019 10.
Article in English | MEDLINE | ID: mdl-31385067

ABSTRACT

Three new dinuclear Pd(II) complexes with general formula [{Pd(en)Cl}2(µ-L)](NO3)2 [L is bridging ligand quinoxaline (Pd1), quinazoline (Pd2) and phthalazine (Pd3)] were synthesized and characterized by elemental microanalyses, UV-Vis, IR and NMR (1H and 13C) spectroscopy. The interaction of dinuclear Pd1-Pd3 complexes with calf thymus DNA (CT-DNA) has been monitored by viscosity measurements, UV-Vis and fluorescence emission spectroscopy in aqueous phosphate buffer solution (PBS) at pH 7.40 and 37 °C. In addition, these experimental conditions have been applied to investigate the binding affinities of Pd1-Pd3 complexes to the bovine serum albumin (BSA) by fluorescence emission spectroscopy. In vitro antiproliferative and apoptotic activities of the dinuclear Pd(II) complexes have been tested on colorectal and lung cancer cell lines. All tested Pd(II) complexes had lower cytotoxic effect than cisplatin against colorectal cancer cells, but also had similar or even higher cytotoxicity than cisplatin against lung cancer cells. All complexes induced apoptosis of colorectal and lung cancer cells, while the highest antiproliferative effect exerted Pd2 complex.


Subject(s)
DNA/metabolism , Heterocyclic Compounds/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Palladium/chemistry , Serum Albumin, Bovine/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Humans , Ligands , Models, Molecular , Molecular Conformation , Organometallic Compounds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...