Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Acta Biol Hung ; 56(1-2): 35-41, 2005.
Article in English | MEDLINE | ID: mdl-15813212

ABSTRACT

In earlier works we have found that in the mammalian pineal organ, a part of autonomic nerves--generally thought to mediate light information from the retina--form vasomotor endings on smooth muscle cells of vessels. We supposed that they serve the vascular support for circadian and circannual periodic changes in the metabolic activity of the pineal tissue. In the present work, we investigated whether peripheral nerves present in the photoreceptive pineal organs of submammalians form similar terminals on microvessels. In the cyclostome, fish, amphibian, reptile and bird species investigated, autonomic nerves accompany vessels entering the arachnoidal capsule and interfollicular meningeal septa of the pineal organ. The autonomic nerves do not enter the pineal tissue proper but remain in the perivasal meningeal septa isolated by basal lamina. They are composed of unmyelinated and myelinated fibers and form terminals around arterioles, veins and capillaries. The terminals contain synaptic and granular vesicles. Comparing various vertebrates, more perivasal terminals were found in reptiles and birds than in the cyclostome, fish and amphibian pineal organs. Earlier, autonomic nerves of the pineal organs were predominantly investigated in connection with the innervation of pineal tissue. The perivasal terminals found in various submammalians show that a part of the pineal autonomic fibers are vasomotoric in nature, but the vasosensor function of some fibers cannot be excluded. We suppose that the vasomotor regulation of the pineal microvessels in the photosensory submamalian pineal--like in mammals--may serve the vascular support for circadian and circannual periodic changes in the metabolic activity of the pineal tissue. The higher number of perivasal terminals in reptiles and birds may correspond to the higher metabolic activity of the tissues in more differentiated species.


Subject(s)
Autonomic Nervous System , Microcirculation , Pineal Gland/blood supply , Pineal Gland/innervation , Amphibians , Animals , Anura , Autonomic Pathways , Birds , Cell Differentiation , Fishes , Light , Lizards , Photoreceptor Cells, Vertebrate/metabolism , Snakes , Species Specificity , Vertebrates
2.
Histol Histopathol ; 19(2): 607-28, 2004 04.
Article in English | MEDLINE | ID: mdl-15024719

ABSTRACT

Recent investigations confirm the importance of nonsynaptic signal transmission in several functions of the nervous tissue. Present in various periventricular brain regions of vertebrates, the system of cerebrospinal fluid (CSF)-contacting neurons seems to have a special role in taking up, transforming and emitting nonsynaptic signals mediated by the internal and external CSF and intercellular fluid of the brain. Most of the CSF-contacting nerve cells send dendritic processes into the internal CSF of the brain ventricles or central canal where they form terminals bearing stereocilia and a 9+0-, or 9+2-type cilium. Some of these neurons resemble known sensory cells of chemoreceptor-type, others may be sensitive to the pressure or flow of the CSF, or to the illumination of the brain tissue. The axons of the CSF-contacting neurons transmit information taken up by dendrites and perikarya to synaptic zones of various brain areas. By forming neurohormonal terminals, axons also contact the external CSF space and release various bioactive substances there. Some perikarya send their axons into the internal CSF, and form free endings there, or synapses on intraventricular dendrites, perikarya and/or on the ventricular surface of ependymal cells. Contacting the intercellular space, sensory-type cilia were also demonstrated on nerve cells situated in the brain tissue subependymally or farther away from the ventricles. Among neuronal elements entering the internal CSF-space, the hypothalamic CSF-contacting neurons are present in the magnocellular and parvicellular nuclei and in some circumventricular organs like the paraventricular organ and the vascular sac. The CSF-contacting dendrites of all these areas bear a solitary 9 x 2+0-type cilium and resemble chemoreceptors cytologically. In electrophysiological experiments, the neurons of the paraventricular organ are highly sensitive to the composition of the ventricular CSF. The axons of the CSF-contacting neurons terminate not only in the hypothalamic synaptic zones but also in tel-, mes- and rhombencephalic nuclei and reach the spinal cord as well. The supposed chemical information taken up by the CSF-contacting neurons from the ventricular CSF may influence the function of these areas of the central nervous system. Some nerve cells of the photoreceptor areas form sensory terminals similar to those of the hypothalamic CSF-contacting neurons. Special secondary neurons of the retina and pineal organ contact the retinal photoreceptor space and pineal recess respectively, both cavities being embryologically derived from the 3rd ventricle. The composition of these photoreceptor spaces is important in the photochemical transduction and may modify the activity of the secondary neurons. Septal and preoptic CSF-contacting neurons contain various opsins and other compounds of the phototransduction cascade and represent deep encephalic photoreceptors detecting the illumination of the brain tissue and play a role in the regulation of circadian and reproductive responses to light. The medullo-spinal CSF-contacting neurons present in the oblongate medulla, spinal cord and terminal filum, send their dendrites into the fourth ventricle and central canal. Resembling mechanoreceptors of the lateral line organ, the spinal CSF-contacting neurons may be sensitive to the pressure or flow of the CSF. The axons of these neurons terminate at the external CSF-space of the oblongate medulla and spinal cord and form neurohormonal nerve endings. Based on information taken up from the CSF, a regulatory effect on the production or composition of CSF was supposed for bioactive materials released by these terminals. Most of the axons of the medullospinal CSF-contacting neurons and the magno- and parvicellular neurosecretory nuclei running to neurohemal areas (neurohypophysis, median eminence, terminal lamina, vascular sac and urophysis) do not terminate directly on vessels, instead they form neurohormonal nerve terminals attached by half-desmosomes on the basal lamina of the external and vascular surface of the brain tissue. Therefore, the bioactive materials released from these terminals primarily enter the external CSF and secondarily, by diffusion into vessels and the composition of the external CSF, may have a modulatory effect on the bioactive substances released by the neurohormonal terminals. Contacting the intercellular space, sensory-type cilia were also demonstrated on nerve cells situated subependymally or farther away from the ventricles, among others in the neurosecretory nuclei. Since tight-junctions are lacking between ependymal cells of the ventricular wall, not only CSF-contacting but also subependymal ciliated neurons may be influenced by the actual composition of the CSF besides that of the intercellular fluid of the brain tissue. According to the comparative histological data summarised in this review, the ventricular CSF-contacting neurons represent the phylogenetically oldest component detecting the internal fluid milieu of the brain. The neurohormonal terminals on the external surface of the brain equally represent an ancient form of nonsynaptic signal transmission.


Subject(s)
Brain/metabolism , Cerebrospinal Fluid/metabolism , Neurons/metabolism , Synapses/metabolism , Animals , Axons/metabolism , Brain/ultrastructure , Cell Nucleus/metabolism , Immunohistochemistry , Lampreys , Microscopy, Electron, Scanning , Models, Anatomic , Neurons/ultrastructure
3.
Acta Biol Hung ; 54(1): 35-44, 2003.
Article in English | MEDLINE | ID: mdl-12705320

ABSTRACT

Cerebrospinal fluid (CSF)-contacting neurons are sensory-type cells sending ciliated dendritic process into the CSF. Some of the prosencephalic CSF-contacting neurons of higher vertebrates were postulated to be chemoreceptors detecting the chemical composition of the CSF, other cells may percieve light as "deep encephalic photoreceptors". In our earlier works, CSF-contacting neurons of the mechanoreceptor-type were described around the central canal of the hagfish spinal cord. It was supposed that perceiving the flow of the CSF they are involved in vasoregulatory mechanisms of the nervous tissue. In the present work, we examined the brain ventricular system of the Atlantic hagfish with special reference to the presence and fine structure of CSF-contacting neurons. Myxinoids have an ontogenetically reduced brain ventricular system. In the adult hagfish (Myxine glutinosa) the lumen of the lateral ventricle is closed, the third ventricle has a preoptic-, infundibular and subhabenular part that are not connected to each other. The choroid plexus is absent. The infundibular part of the third ventricle has a medial hypophyseal recess and, more caudally, a paired lateral recess. We found CSF-contacting neurons in the lower part of the third ventricle, in the preoptic and infundibular recess as well as in the lateral infundibular recesses. No CSF-contacting neurons were found in the cerebral aqueduct connecting the subhabenular recess to the fourth ventricle. There is a pineal recess and a well-developed subcommissural organ at the rostral end of the aqueduct. Extending from the caudal part of the fourth ventricle in the medulla to the caudal end of the spinal cord, the central canal has a dorsal and ventral part. Dendrites of CSF-contacting neurons are protruding into the ventral lumen. Corroborating the supposed choroid plexus-like function of the wall of the dorsal central canal, segmental vessels reach a thin area on both sides of the ependymal lining. The perikarya of the CSF-contacting neurons found in the brain ventricles are mainly bipolar and contain granular vesicles of various size. The bulb-like terminal of their ventricular dendrites bears several stereocilia and contains basal bodies as well as mitochondria. Basal bodies emit cilia of the 9+0-type. Cilia may arise from the basal body and accessory basal body as well. The axons run ependymofugally and enter--partially cross--the periventricular synaptic zones. No neurohemal terminals similar to those formed by spinal CSF-contacting neurons of higher vertebrates have been found in the hagfish. We suppose that CSF-contacting neurons transform CSF-mediated non-synaptic information taken up by their ventricular dendrites to synaptic one. A light-sensitive role for some (preoptic?) groups of CSF-contacting neurons cannot be excluded.


Subject(s)
Cerebral Ventricles/physiology , Hagfishes/cerebrospinal fluid , Neurons, Afferent/physiology , Animals , Atlantic Ocean , Cell Communication/physiology , Cerebral Ventricles/cytology , Cerebral Ventricles/ultrastructure , Nerve Fibers/physiology
4.
Acta Biol Hung ; 54(3-4): 233-40, 2003.
Article in English | MEDLINE | ID: mdl-14711028

ABSTRACT

The significance of autonomic nerves reaching the pincal organ was already investigated in connection to the innervation of pinealocytes and mediating light information from the retina for periodic melatonin secretion. In earlier works we found that some autonomic nerve fibers are not secretomotor but terminate on arteriolar smooth muscle cells in the pineal organ of the mink (Mustela vison). Studying in serial sections the pineal organ of the mink and 15 other mammalian species in the present work, we investigated whether similar axons of vasomotor-type are generally present in the wall of pineal vessels, further, whether they reach the organ via the conarian nerves or via periarterial plexuses. In all species investigated, axons of perivasal nerve bundles were found to form terminal enlargements on the smooth muscle layer of pineal arterioles. The neuromuscular endings contain several synaptic and some granular vesicles. Axon terminals are also present around pineal veins. In serial sections, we found that the so-called conarian autonomic nerves reach the pineal organ alongside pineal veins draining into the great internal cerebral vein. Similar nerves present near arteries of the arachnoid enter the pineal meningeal capsule and septa by arterioles, both perivenous and periarterial nerves form terminals of vasomotor-type. The arteriomotor and venomotor regulation of the tone of the vessels of the pineal organ may serve the vascular support for circadian and circannual periodic changes in metabolic activity of the pineal tissue.


Subject(s)
Autonomic Pathways/ultrastructure , Muscle, Smooth, Vascular/innervation , Myocytes, Smooth Muscle/cytology , Pineal Gland/anatomy & histology , Animals , Mink , Muscle, Smooth, Vascular/cytology
5.
Histol Histopathol ; 17(2): 555-90, 2002 04.
Article in English | MEDLINE | ID: mdl-11962759

ABSTRACT

The role of the nonvisual photoreception is to synchronise periodic functions of living organisms to the environmental light periods in order to help survival of various species in different biotopes. In vertebrates, the so-called deep brain (septal and hypothalamic) photoreceptors, the pineal organs (pineal- and parapineal organs, frontal- and parietal eye) and the retina (of the "lateral" eye) are involved in the light-based entrain of endogenous circadian clocks present in various organs. In humans, photoperiodicity was studied in connection with sleep disturbances in shift work, seasonal depression, and in jet-lag of transmeridional travellers. In the present review, experimental and molecular aspects are discussed, focusing on the histological and histochemical basis of the function of nonvisual photoreceptors. We also offer a view about functional changes of these photoreceptors during pre- and postnatal development as well as about its possible evolution. Our scope in some points is different from the generally accepted views on the nonvisual photoreceptive systems. The deep brain photoreceptors are hypothalamic and septal nuclei of the periventricular cerebrospinal fluid (CSF)-contacting neuronal system. Already present in the lancelet and representing the most ancient type of vertebrate nerve cells ("protoneurons"), CSF-contacting neurons are sensory-type cells sitting in the wall of the brain ventricles that send a ciliated dendritic process into the CSF. Various opsins and other members of the phototransduction cascade have been demonstrated in telencephalic and hypothalamic groups of these neurons. In all species examined so far, deep brain photoreceptors play a role in the circadian and circannual regulation of periodic functions. Mainly called pineal "glands" in the last decades, the pineal organs actually represent a differentiated form of encephalic photoreceptors. Supposed to be intra- and extracranially outgrown groups of deep brain photoreceptors, pineal organs also contain neurons and glial elements. Extracranial pineal organs of submammalians are cone-dominated photoreceptors sensitive to different wavelengths of light, while intracranial pineal organs predominantly contain rod-like photoreceptor cells and thus scotopic light receptors. Vitamin B-based light-sensitive cryptochromes localized immunocytochemically in some pineal cells may take part in both the photoreception and the pacemaker function of the pineal organ. In spite of expressing phototransduction cascade molecules and forming outer segment-like cilia in some species, the mammalian pineal is considered by most of the authors as a light-insensitive organ. Expression of phototransduction cascade molecules, predominantly in young animals, is a photoreceptor-like characteristic of pinealocytes in higher vertebrates that may contribute to a light-percepting task in the perinatal entrainment of rhythmic functions. In adult mammals, adrenergic nerves--mediating daily fluctuation of sympathetic activity rather than retinal light information as generally supposed--may sustain circadian periodicity already entrained by light perinatally. Altogether three phases were supposed to exist in pineal entrainment of internal pacemakers: an embryological synchronization by light and in viviparous vertebrates by maternal effects (1); a light-based, postnatal entrainment (2); and in adults, a maintenance of periodicity by daily sympathetic rhythm of the hypothalamus. In addition to its visual function, the lateral eye retina performs a nonvisual task. Nonvisual retinal light perception primarily entrains genetically-determined periodicity, such as rod-cone dominance, EEG rhythms or retinomotor movements. It also influences the suprachiasmatic nucleus, the primary pacemaker of the brain. As neither rods nor cones seem to represent the nonvisual retinal photoreceptors, the presence of additional photoreceptors has been supposed. Cryptochrome 1, a photosensitive molecule identified in retinal nerve cells and in a subpopulation of retinal photoreceptors, is a good candidate for the nonvisual photoreceptor molecule as well as for a member of pacemaker molecules in the retina. When comparing various visual and nonvisual photoreceptors, transitory, "semi visual" (directional) light-perceptive cells can be detected among them, such as those in the parietal eye of reptiles. Measuring diffuse light intensity of the environment, semivisual photoreceptors also possess some directional light perceptive capacity aided by complementary lens-like structures, and screening pigment cells. Semivisual photoreception in aquatic animals may serve for identifying environmental areas of suitable illumination, or in poikilotermic terrestrial species for measuring direct solar irradiation for thermoregulation. As directional photoreceptors were identified among nonvisual light perceptive cells in the lancelet, but eyes are lacking, an early appearance of semivisual function, prior to a visual one (nonvisual --> semivisual --> visual?) in the vertebrate evolution was supposed.


Subject(s)
Brain/metabolism , Photoreceptor Cells/metabolism , Pineal Gland/metabolism , Retina/metabolism , Animals , Humans , Photoreceptor Cells/physiology
6.
J Comp Physiol B ; 171(1): 77-84, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11263729

ABSTRACT

The white-tailed prairie dog is a spontaneous hibernator which commences deep torpor bouts during early fall while the black-tailed prairie dog is a facultative hibernator that will only enter shallow torpor when stressed by cold and food deprivation. Plant oils rich in polyunsaturated fatty acids (PUFAs) enhance the duration and depth of mammalian torpor. Thus, we tested the hypothesis that black-tailed prairie dogs sampled in the field have less PUFAs in their diets and that the enhancement of torpor bouts by this species on a diet higher in PUFA is less profound than that by white-tailed prairie dogs. Individuals of both species fed a high PUFA diet: (1) entered torpor earlier, (2) had lower torpor body temperatures and (3) had longer bouts of torpor, compared to those on a low PUFA diet. However, the magnitude of this change was similar for both species. Additionally, the PUFA compositions of white adipose tissue (WAT) samples taken from individuals in the field were identical, indicating that diet PUFA contents for these two species were also equivalent. Therefore, while high PUFA diets can enhance hibernation by these species, it does not appear to explain the differences between spontaneous and facultative strategies. The rate of lipid peroxidation during torpor, however, was significantly higher in the WAT from white-tailed prairie dogs. Ancestral prairie dog species are spontaneous hibernators. Natural selection may have favored shallow, facultative hibernation with lower lipid peroxidation rates in the black-tailed prairie dogs as they radiated from the Rocky Mountains into the Great Plains.


Subject(s)
Dietary Fats/administration & dosage , Fatty Acids, Unsaturated/administration & dosage , Hibernation/physiology , Sciuridae/physiology , Adipose Tissue/metabolism , Animals , Female , Hibernation/drug effects , Male , Plant Oils/administration & dosage , Species Specificity
7.
J Comp Physiol B ; 170(7): 551-9, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11128446

ABSTRACT

Dramatic changes in blood flow occur during torpor-arousal cycles in mammalian hibernators that could increase the risk of oxidative stress to sensitive tissues. We used 13-lined ground squirrels (Spermophilus tridecemlineatus) to determine the effect of hibernation on lipid peroxidation and expression of stress-activated signaling pathways in the intestine, a tissue highly susceptible to ischemia-reperfusion injury. Compared with summer-active squirrels, levels of the mitochondrial stress protein GRP75 were consistently higher in intestinal mucosa of hibernators in each of five hibernation states (entrance, short-bout torpid, long-bout torpid, arousal and interbout euthermia). The redox-sensitive transcription factor, nuclear factor-kappaB (NF-kappaB), was strongly activated in each hibernation state compared with summer squirrels except for squirrels during an arousal from torpor. In contrast, NF-kappaB activation in brown adipose tissue (BAT) was low in active and hibernating squirrels regardless of season. Levels of conjugated dienes (products of lipid peroxidation) were higher in intestine of hibernators entering torpor and early in a torpor bout compared with summer squirrels. Conjugated diene levels were also higher in short-bout torpid vs arousing squirrels. The results suggest that the intestinal mucosa is vulnerable to oxidative stress during the hibernation season and in response may activate cellular defense pathways that help minimize severe oxidative damage induced by torpor-arousal cycles.


Subject(s)
Hibernation/physiology , Intestines/physiology , NF-kappa B/physiology , Oxidative Stress/physiology , Sciuridae/physiology , Animals , HSP70 Heat-Shock Proteins/metabolism , Lipid Peroxides/metabolism , Membrane Proteins/metabolism
8.
J Comp Physiol B ; 164(7): 536-42, 1995.
Article in English | MEDLINE | ID: mdl-7884064

ABSTRACT

Golden-mantled ground squirrels (Spermophilus lateralis) are herbivores that hibernate during winter. Although little is known about the nutritional/physiological constraints on hibernation, numerous studies have demonstrated that increasing the amount of linoleic acid (a polyunsaturated fatty acid) in the diet enhances hibernation. This is probably because high linoleic acid diets reduce the melting points of the depot fats produced for hibernation which makes them more metabolizable at low body temperatures. This suggests that a major limitation on hibernation may be obtaining enough linoleic acid in the diet for proper hibernation. In all previous studies, however, the amount of linoleic acid in the diets of free-ranging animals was either not considered, or the range of dietary linoleic acid contents in the experiments was less than that of natural diets. It is thus not known whether the amount of linoleic acid available to hibernators under natural conditions actually limits their torpor patterns. A series of laboratory feeding and hibernation experiments were conducted with S. lateralis and artificial diets with different linoleic acid contents that were either below or above the linoleic acid content of the natural diet. The results demonstrated that when dietary linoleic acid contents are either below or above natural levels, hibernation ability is greatly reduced. Hibernation ability was reduced when the squirrels were maintained on a high linoleic acid diet probably by the production of toxic lipid peroxides in brown adipose tissues. The results indicate that there is an optimal level of dietary linoleic acid for proper hibernation, and this is equal to that of the natural diet.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Adipose Tissue/metabolism , Hibernation/physiology , Sciuridae/physiology , Animals , Dietary Fats/pharmacology , Linoleic Acid , Linoleic Acids/metabolism , Linoleic Acids/pharmacology , Lipid Peroxides/metabolism , Sciuridae/anatomy & histology , alpha-Linolenic Acid/metabolism , alpha-Linolenic Acid/pharmacology
9.
AJR Am J Roentgenol ; 163(6): 1503-7, 1994 Dec.
Article in English | MEDLINE | ID: mdl-7992756

ABSTRACT

OBJECTIVE: In the face of a changing health care system and increased competition, radiology departments need to become more efficient. One measurement of efficiency is promptness in producing a final report. Many large radiology centers have radiology information systems (RIS) that track work flow, collecting tremendous amounts of data. Most, however, lack an appropriate analytic mechanism. We have developed an integrated system that allows continual monitoring of radiology work flow and thus of opportunities to apply interventions. This system can form an important component of the quality management process in the radiology department. MATERIALS AND METHODS: In developing the system, we identified seven key steps in the work-flow process. When left to chance, these steps occur out of sequence and large delays occur. A scheme was devised to improve the sequencing of the work flow by using the data collected from the RIS, sorted by radiology division and patient type. Biweekly, the appropriate data file is transferred to each division for analysis, via the department's computer network. A one-step process follows, using desktop Macintosh computers and a custom program written in Microsoft Excel. Extracted data are quickly converted into a tailored division summary, and a report is automatically generated. RESULTS: The result summary format is uniform throughout the department, allowing ease of review at divisional and departmental meetings. Problems can be immediately localized to a specific step in the work-flow process. Automation of much of the system allows continual, near-real-time review of work flow. Using this approach, we have seen a sustained reduction of average report turnaround time. CONCLUSION: This system allows continual monitoring of work flow. It is largely automated and lends itself well to inclusion in the quality management program of any radiology department.


Subject(s)
Radiology Information Systems , Medical Records Systems, Computerized
10.
Aust Vet J ; 62(4): 112-4, 1985 Apr.
Article in English | MEDLINE | ID: mdl-3896219

ABSTRACT

Over 3 years, the immunogenic responses of various batches of multi-component clostridial vaccines in sheep, rabbits and guinea pigs were compared. Fully susceptible healthy sheep were found to be more suitable than rabbits or guinea pigs for testing the potency of multi-component clostridial vaccines containing Clostridium novyi type B, C. perfringens type D, C. septicum and C. tetani, and recommendations are made that sheep are the preferred species for testing the potency of clostridial vaccines.


Subject(s)
Bacterial Vaccines/immunology , Clostridium tetani/immunology , Clostridium/immunology , Guinea Pigs/immunology , Rabbits/immunology , Sheep/immunology , Toxoids/immunology , Animals , Antitoxins/analysis , Bacterial Vaccines/administration & dosage , Male , Neutralization Tests , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL