Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Curr Biol ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38876103

ABSTRACT

While the neural basis of age-related decline has been extensively studied,1,2,3 less is known about changes in neural function during the pre-senescent stages of adulthood. Adult neural plasticity is likely a key factor in social insect age polyethism, where individuals perform different tasks as they age and divide labor in an age-dependent manner.4,5,6,7,8,9 Primarily, workers transition from nursing to foraging tasks,5,10 become more aggressive, and more readily display alarm behavior11,12,13,14,15,16 as they get older. While it is unknown how these behavioral dynamics are neurally regulated, they could partially be generated by altered salience of behaviorally relevant stimuli.4,6,7 Here, we investigated how odor coding in the antennal lobe (AL) changes with age in the context of alarm pheromone communication in the clonal raider ant (Ooceraea biroi).17 Similar to other social insects,11,12,16 older ants responded more rapidly to alarm pheromones, the chemical signals for danger. Using whole-AL calcium imaging,18 we then mapped odor representations for five general odorants and two alarm pheromones in young and old ants. Alarm pheromones were represented sparsely at all ages. However, alarm pheromone responses within individual glomeruli changed with age, either increasing or decreasing. Only two glomeruli became sensitized to alarm pheromones with age, while at the same time becoming desensitized to general odorants. Our results suggest that the heightened response to alarm pheromones in older ants occurs via increased sensitivity in these two core glomeruli, illustrating the importance of sensory modulation in social insect division of labor and age-associated behavioral plasticity.

2.
Annu Rev Neurosci ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38603564

ABSTRACT

Ant physiology has been fashioned by 100 million years of social evolution. Ants perform many sophisticated social and collective behaviors yet possess nervous systems similar in schematic and scale to that of the fruit fly Drosophila melanogaster, a popular solitary model organism. Ants are thus attractive complementary subjects to investigate adaptations pertaining to complex social behaviors that are absent in flies. Despite research interest in ant behavior and the neurobiological foundations of sociality more broadly, our understanding of the ant nervous system is incomplete. Recent technical advances have enabled cutting-edge investigations of the nervous system in a fashion that is less dependent on model choice, opening the door for mechanistic social insect neuroscience. In this review, we revisit important aspects of what is known about the ant nervous system and behavior, and we look forward to how functional circuit neuroscience in ants will help us understand what distinguishes solitary animals from highly social ones.

3.
bioRxiv ; 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38405746

ABSTRACT

While the neural basis of age-related decline has been extensively studied (1-3), less is known about changes in neural function during the pre-senescent stages of adulthood. Adult neural plasticity is likely a key factor in social insect age polyethism, where individuals perform different tasks as they age and divide labor in an age-dependent manner (4-9). Primarily, workers transition from nursing to foraging tasks (5, 10), become more aggressive, and more readily display alarm behavior (11-16) as they get older. While it is unknown how these behavioral dynamics are neurally regulated, they could partially be generated by altered salience of behaviorally relevant stimuli (4, 6, 7). Here, we investigated how odor coding in the antennal lobe (AL) changes with age in the context of alarm pheromone communication in the clonal raider ant (Ooceraea biroi) (17). Similar to other social insects (11, 12, 16), older ants responded more rapidly to alarm pheromones, the chemical signals for danger. Using whole-AL calcium imaging (18), we then mapped odor representations for five general odorants and two alarm pheromones in young and old ants. Alarm pheromones were represented sparsely at all ages. However, alarm pheromone responses within individual glomeruli changed with age, either increasing or decreasing. Only two glomeruli became sensitized to alarm pheromones with age, while at the same time becoming desensitized to general odorants. Our results suggest that the heightened response to alarm pheromones in older ants occurs via increased sensitivity in these two core glomeruli, illustrating the importance of sensory modulation in social insect division of labor and age-associated behavioral plasticity.

4.
Curr Biol ; 33(24): 5456-5466.e5, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38070504

ABSTRACT

Insects and mammals have independently evolved odorant receptor genes that are arranged in large genomic tandem arrays. In mammals, each olfactory sensory neuron chooses to express a single receptor in a stochastic process that includes substantial chromatin rearrangements. Here, we show that ants, which have the largest odorant receptor repertoires among insects, employ a different mechanism to regulate gene expression from tandem arrays. Using single-nucleus RNA sequencing, we found that ant olfactory sensory neurons choose different transcription start sites along an array but then produce mRNA from many downstream genes. This can result in transcripts from dozens of receptors being present in a single nucleus. Such rampant receptor co-expression at first seems difficult to reconcile with the narrow tuning of the ant olfactory system. However, RNA fluorescence in situ hybridization showed that only mRNA from the most upstream transcribed odorant receptor seems to reach the cytoplasm where it can be translated into protein, whereas mRNA from downstream receptors gets sequestered in the nucleus. This implies that, despite the extensive co-expression of odorant receptor genes, each olfactory sensory neuron ultimately only produces one or very few functional receptors. Evolution has thus found different molecular solutions in insects and mammals to the convergent challenge of selecting small subsets of receptors from large odorant receptor repertoires.


Subject(s)
Ants , Olfactory Receptor Neurons , Receptors, Odorant , Animals , Receptors, Odorant/metabolism , Ants/genetics , Ants/metabolism , In Situ Hybridization, Fluorescence , Olfactory Receptor Neurons/physiology , Mammals/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
Nat Commun ; 14(1): 7067, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37923719

ABSTRACT

Neurons that participate in sensory processing often display "ON" responses, i.e., fire transiently at the onset of a stimulus. ON transients are widespread, perhaps universal to sensory coding, yet their function is not always well-understood. Here, we show that ON responses in the Drosophila thermosensory system extrapolate the trajectory of temperature change, priming escape behavior if unsafe thermal conditions are imminent. First, we show that second-order thermosensory projection neurons (TPN-IIIs) and their Lateral Horn targets (TLHONs), display ON responses to thermal stimuli, independent of direction of change (heating or cooling) and of absolute temperature. Instead, they track the rate of temperature change, with TLHONs firing exclusively to rapid changes (>0.2 °C/s). Next, we use connectomics to track TLHONs' output to descending neurons that control walking and escape, and modeling and genetic silencing to demonstrate how ON transients can flexibly amplify aversive responses to small thermal change. Our results suggest that, across sensory systems, ON transients may represent a general mechanism to systematically anticipate and respond to salient or dangerous conditions.


Subject(s)
Drosophila , Neurons , Animals , Neurons/physiology , Sensation/physiology , Temperature , Cold Temperature
7.
Cell ; 186(14): 3079-3094.e17, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37321218

ABSTRACT

Ants communicate via large arrays of pheromones and possess expanded, highly complex olfactory systems, with antennal lobes in the brain comprising up to ∼500 glomeruli. This expansion implies that odors could activate hundreds of glomeruli, which would pose challenges for higher-order processing. To study this problem, we generated transgenic ants expressing the genetically encoded calcium indicator GCaMP in olfactory sensory neurons. Using two-photon imaging, we mapped complete glomerular responses to four ant alarm pheromones. Alarm pheromones robustly activated ≤6 glomeruli, and activity maps for the three pheromones inducing panic alarm in our study species converged on a single glomerulus. These results demonstrate that, rather than using broadly tuned combinatorial encoding, ants employ precise, narrowly tuned, and stereotyped representations of alarm pheromones. The identification of a central sensory hub glomerulus for alarm behavior suggests that a simple neural architecture is sufficient to translate pheromone perception into behavioral outputs.


Subject(s)
Ants , Animals , Ants/genetics , Brain/physiology , Odorants , Pheromones , Smell/physiology , Behavior, Animal
8.
Curr Biol ; 30(12): 2275-2288.e5, 2020 06 22.
Article in English | MEDLINE | ID: mdl-32442464

ABSTRACT

Animals react to environmental changes over timescales ranging from seconds to days and weeks. An important question is how sensory stimuli are parsed into neural signals operating over such diverse temporal scales. Here, we uncover a specialized circuit, from sensory neurons to higher brain centers, that processes information about long-lasting, absolute cold temperature in Drosophila. We identify second-order thermosensory projection neurons (TPN-IIs) exhibiting sustained firing that scales with absolute temperature. Strikingly, this activity only appears below the species-specific, preferred temperature for D. melanogaster (∼25°C). We trace the inputs and outputs of TPN-IIs and find that they are embedded in a cold "thermometer" circuit that provides powerful and persistent inhibition to brain centers involved in regulating sleep and activity. Our results demonstrate that the fly nervous system selectively encodes and relays absolute temperature information and illustrate a sensory mechanism that allows animals to adapt behavior specifically to cold conditions on the timescale of hours to days.


Subject(s)
Cold Temperature , Drosophila melanogaster/physiology , Sensory Receptor Cells/physiology , Thermosensing/physiology , Animals , Brain/physiology , Motor Activity/physiology , Sleep/physiology
9.
Curr Biol ; 27(15): 2381-2388.e4, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28736172

ABSTRACT

The Drosophila antenna contains receptor neurons for mechanical, olfactory, thermal, and humidity stimuli. Neurons expressing the ionotropic receptor IR40a have been implicated in the selection of an appropriate humidity range [1, 2], but although previous work indicates that insect hygroreceptors may be made up by a "triad" of neurons (with a dry-, a cold-, and a humid-air-responding cell [3]), IR40a expression included only cold- and dry-air cells. Here, we report the identification of the humid-responding neuron that completes the hygrosensory triad in the Drosophila antenna. This cell type expresses the Ir68a gene, and Ir68a mutation perturbs humidity preference. Next, we follow the projections of Ir68a neurons to the brain and show that they form a distinct glomerulus in the posterior antennal lobe (PAL). In the PAL, a simple sensory map represents related features of the external environment with adjacent "hot," "cold," "dry," and "humid" glomeruli-an organization that allows for both unique and combinatorial sampling by central relay neurons. Indeed, flies avoided dry heat more robustly than humid heat, and this modulation was abolished by silencing of dry-air receptors. Consistently, at least one projection neuron type received direct synaptic input from both temperature and dry-air glomeruli. Our results further our understanding of humidity sensing in the Drosophila antenna, uncover a neuronal substrate for early sensory integration of temperature and humidity in the brain, and illustrate the logic of how ethologically relevant combinations of sensory cues can be processed together to produce adaptive behavioral responses.


Subject(s)
Drosophila melanogaster/physiology , Thermosensing , Animals , Brain/physiology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Humidity , Temperature
10.
Curr Biol ; 26(10): 1352-8, 2016 05 23.
Article in English | MEDLINE | ID: mdl-27161501

ABSTRACT

Environmental humidity influences the fitness and geographic distribution of all animals [1]. Insects in particular use humidity cues to navigate the environment, and previous work suggests the existence of specific sensory mechanisms to detect favorable humidity ranges [2-5]. Yet, the molecular and cellular basis of humidity sensing (hygrosensation) remains poorly understood. Here we describe genes and neurons necessary for hygrosensation in the vinegar fly Drosophila melanogaster. We find that members of the Drosophila genus display species-specific humidity preferences related to conditions in their native habitats. Using a simple behavioral assay, we find that the ionotropic receptors IR40a, IR93a, and IR25a are all required for humidity preference in D. melanogaster. Yet, whereas IR40a is selectively required for hygrosensory responses, IR93a and IR25a mediate both humidity and temperature preference. Consistent with this, the expression of IR93a and IR25a includes thermosensory neurons of the arista. In contrast, IR40a is excluded from the arista but is expressed (and required) in specialized neurons innervating pore-less sensilla of the sacculus, a unique invagination of the third antennal segment. Indeed, calcium imaging showed that IR40a neurons directly respond to changes in humidity, and IR40a knockdown or IR93a mutation reduced their responses to stimuli. Taken together, our results suggest that the preference for a specific humidity range depends on specialized sacculus neurons, and that the processing of environmental humidity can happen largely in parallel to that of temperature.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/physiology , Humidity , Receptors, Ionotropic Glutamate/genetics , Sensation , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Male , Neurons/metabolism , Receptors, Ionotropic Glutamate/metabolism , Sensilla/metabolism
11.
Nature ; 519(7543): 358-61, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25739506

ABSTRACT

In Drosophila, rapid temperature changes are detected at the periphery by dedicated receptors forming a simple sensory map for hot and cold in the brain. However, flies show a host of complex innate and learned responses to temperature, indicating that they are able to extract a range of information from this simple input. Here we define the anatomical and physiological repertoire for temperature representation in the Drosophila brain. First, we use a photolabelling strategy to trace the connections that relay peripheral thermosensory information to higher brain centres, and show that they largely converge onto three target regions: the mushroom body, the lateral horn (both of which are well known centres for sensory processing) and the posterior lateral protocerebrum, a region we now define as a major site of thermosensory representation. Next, using in vivo calcium imaging, we describe the thermosensory projection neurons selectively activated by hot or cold stimuli. Fast-adapting neurons display transient ON and OFF responses and track rapid temperature shifts remarkably well, while slow-adapting cell responses better reflect the magnitude of simple thermal changes. Unexpectedly, we also find a population of broadly tuned cells that respond to both heating and cooling, and show that they are required for normal behavioural avoidance of both hot and cold in a simple two-choice temperature preference assay. Taken together, our results uncover a coordinated ensemble of neural responses to temperature in the Drosophila brain, demonstrate that a broadly tuned thermal line contributes to rapid avoidance behaviour, and illustrate how stimulus quality, temporal structure, and intensity can be extracted from a simple glomerular map at a single synaptic station.


Subject(s)
Brain/physiology , Drosophila melanogaster/physiology , Neural Pathways , Temperature , Thermosensing/physiology , Animals , Brain/anatomy & histology , Brain/cytology , Brain Mapping , Calcium/analysis , Calcium/metabolism , Drosophila melanogaster/cytology , Mushroom Bodies/innervation , Neurons/metabolism , Synapses/metabolism , Thermoreceptors/metabolism , Time Factors
12.
Cell Biochem Biophys ; 67(1): 45-53, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23695785

ABSTRACT

Ubiquitin proteasome system (UPS) determines the timing and extent of protein turnover in cells, and it is one of the most strictly controlled cellular mechanisms. Lack of proper control over UPS is attributed to both cancer and to neurodegenerative diseases, yet in different context and direction. Cancerous cells have altered cellular metabolisms, uncontrolled cellular division, and increased proteasome activity. The specialized function prevent neurons from undergoing cellular division but allow them to extend an axon over long distances, establish connections, and to form stable neuronal circuitries. Neurons heavily depend on the proper function of the proteasome and the UPS for their proper function. Reduction of UPS function in vulnerable neurons results in protein aggregation, increased ER stress, and cell death. Identification of compounds that selectively block proteasome function in distinct set of malignancies added momentum to drug discovery efforts, and deubiquitinases (DUBs) gained much attention. This review will focus on ubiquitin carboxy-terminal hydrolase L1 (UCHL1), a DUB that is attributed to both cancer and neurodegeneration. The potential of developing effective treatment strategies for two major health problems by controlling the function of UPS opens up new avenues for innovative approaches and therapeutic interventions.


Subject(s)
Proteasome Endopeptidase Complex/metabolism , Ubiquitin Thiolesterase/metabolism , Ubiquitin/metabolism , Humans , Neoplasms/metabolism , Neoplasms/pathology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Protein Interaction Maps , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin-Specific Proteases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...