Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Acta Biochim Biophys Sin (Shanghai) ; 46(9): 774-81, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25079679

ABSTRACT

Non-steroid anti-inflammatory drugs (NSAIDs) are generally used in the treatment of inflammation and pain through cyclooxygenase (COX) inhibition. Mounting evidence has indicated additional COX-independent targets for NSAIDs including acid-sensing ion channels (ASICs) 1a and 3. However, detailed function and mechanism of ASICs still remain largely elusive. In this study, the impact of NSAIDs on ASICs in nucleus pulposus cells of the human intervertebral disk was investigated. Nucleus pulposus cells were isolated and cultured from protruded disk tissues of 40 patients. It was shown that ASIC1a and ASIC3 were expressed and functional in these cells by analyzing proton-gated currents after ASIC inhibition. We further investigated the neuroprotective capacity of ibuprofen (a COX inhibitor), psalmotoxin-1 (PcTX1, a tarantula toxin specific for homomeric ASIC1a), and amiloride (a classic inhibitor of the epithelial sodium channel ENaC/DEG family to which ASICs belong). PcTX1-containing venom has been shown to be comparable with amiloride in its neuroprotective features in rodent models of ischemia. Taken together, our data showed that amiloride, PcTX1, and ibuprofen decreased ASIC protein expression and thereby exerted protective effects from ASIC inhibition-mediated cell damage.


Subject(s)
Acid Sensing Ion Channels/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Intervertebral Disc/drug effects , Base Sequence , DNA Primers , Humans , Ibuprofen/pharmacology , Intervertebral Disc/metabolism , Polymerase Chain Reaction
2.
Structure ; 22(7): 1063-70, 2014 Jul 08.
Article in English | MEDLINE | ID: mdl-24954616

ABSTRACT

Multiprotein complexes govern virtually all cellular processes. Their 3D structures provide important clues to their biological roles, especially through structural correlations among protein molecules and complexes. The detection of such correlations generally requires comprehensive searches in databases of known protein structures by means of appropriate structure-matching techniques. Here, we present a high-speed structure search engine capable of instantly matching large protein oligomers against the complete and up-to-date database of biologically functional assemblies of protein molecules. We use this tool to reveal unseen structural correlations on the level of protein quaternary structure and demonstrate its general usefulness for efficiently exploring complex structural relationships among known protein assemblies.


Subject(s)
Computational Biology/methods , Information Storage and Retrieval/methods , Multiprotein Complexes/chemistry , Protein Structure, Quaternary , Algorithms , Databases, Protein , Internet , Models, Molecular , Protein Conformation , Reproducibility of Results
3.
J Med Chem ; 56(20): 7772-87, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-24083782

ABSTRACT

XIAP is a key regulator of apoptosis, and its overexpression in cancer cells may contribute to their survival. The antiapoptotic function of XIAP derives from its BIR domains, which bind to and inhibit pro-apoptotic caspases. Most known IAP inhibitors are selective for the BIR3 domain and bind to cIAP1 and cIAP2 as well as XIAP. Pathways activated upon cIAP binding contribute to the function of these compounds. Inhibitors selective for XIAP should exert pro-apoptotic effects through competition with the terminal caspases. This paper details our synthetic explorations of a novel XIAP BIR2-selective benzazepinone screening hit with a focus on increasing BIR2 potency and overcoming high in vivo clearance. These efforts led to the discovery of benzoxazepinone 40, a potent BIR2-selective inhibitor with good in vivo pharmacokinetic properties which potentiates apoptotic signaling in a manner mechanistically distinct from that of known pan-IAP inhibitors.


Subject(s)
Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/pharmacology , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , X-Linked Inhibitor of Apoptosis Protein/antagonists & inhibitors , Alanine/analogs & derivatives , Alanine/chemical synthesis , Alanine/pharmacokinetics , Alanine/pharmacology , Animals , Antibodies, Monoclonal/pharmacology , Apoptosis/drug effects , Blotting, Western , Caspase 3/metabolism , Caspase 7/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Female , Heterocyclic Compounds/pharmacokinetics , Humans , Inhibitor of Apoptosis Proteins/chemistry , Inhibitor of Apoptosis Proteins/metabolism , Mice , Mice, Nude , Models, Chemical , Models, Molecular , Molecular Structure , Oxazepines/chemical synthesis , Oxazepines/pharmacokinetics , Oxazepines/pharmacology , Protein Structure, Tertiary , Rats , Ubiquitin-Protein Ligases , X-Linked Inhibitor of Apoptosis Protein/chemistry , X-Linked Inhibitor of Apoptosis Protein/metabolism , Xenograft Model Antitumor Assays
4.
Bioorg Med Chem Lett ; 23(4): 1036-40, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23312471

ABSTRACT

From a series of N-acyl 4-(3-pyridonyl)phenylalanine derivatives of 4, the trifluoromethyl derivative 28 was identified as a potent, dual acting alpha4 integrin antagonist with activity in primate models of allergic asthma. Investigation of a series of prodrug esters led to the discovery of the morpholinopropyl derivative 48 that demonstrated good intestinal fluid stability, solubility and permeability. Compound 48 gave high blood levels of 28 when dosed orally in cynomolgus monkeys. Surprisingly, hydrolysis of 48 was rapid in liver microsomes from the pharmacological species, mouse, rat and monkey, but slow in dog and human; in vivo studies also indicated there was prolonged exposure to unchanged prodrug in dogs.


Subject(s)
Integrin alpha4beta1/antagonists & inhibitors , Integrins/antagonists & inhibitors , Phenylalanine/analogs & derivatives , Animals , Dogs , Esters/blood , Esters/pharmacology , Humans , Mice , Phenylalanine/pharmacology , Prodrugs/chemistry , Prodrugs/pharmacology , Rats
5.
Bioorg Med Chem Lett ; 23(4): 1026-31, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23312474

ABSTRACT

N-Acyl 4-(5-pyrimidine-2,4-dionyl)phenylalanine derivatives of type 4 were designed to replace the 2,6-dichlorobenzoylamine portion of compound 1 in order to identify novel compounds with improved potency against α4-integrins. Several derivatives were identified as very potent dual-acting α4-integrin, α4ß1 and α4ß7 antagonists. Investigation of a limited number of prodrug esters led to the discovery of the ethyl ester prodrug 42, which demonstrated good intestinal fluid stability and good permeability. Despite low solubility, 42 gave acceptable blood levels of 30 when dosed orally in non-human primates. Additionally, 42 had an overall excellent profile and was selected for clinical trials. Investigation of N-acyl 4-(5-pyrimidine-2,4-dionyl)phenylalanine derivatives led to the discovery of several very potent dual-acting α4-integrin antagonists. Ethyl ester prodrug 42 advanced to human clinical trials based on the excellent intestinal fluid stability, good permeability and superior efficacy in non-human primates.


Subject(s)
Integrin alpha4beta1/antagonists & inhibitors , Integrins/antagonists & inhibitors , Phenylalanine/analogs & derivatives , Pyrimidines/pharmacology , Animals , Dogs , Esters/chemistry , Esters/pharmacokinetics , Esters/pharmacology , Humans , Macaca fascicularis , Mice , Phenylalanine/pharmacokinetics , Phenylalanine/pharmacology , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Rats , Structure-Activity Relationship
6.
J Med Chem ; 56(1): 345-56, 2013 Jan 10.
Article in English | MEDLINE | ID: mdl-23214979

ABSTRACT

The Janus kinases (JAKs) are involved in multiple signaling networks relevant to inflammatory diseases, and inhibition of one or more members of this class may modulate disease activity or progression. We optimized a new inhibitor scaffold, 3-amido-5-cyclopropylpyrrolopyrazines, to a potent example with reasonable kinome selectivity, including selectivity for JAK3 versus JAK1, and good biopharmaceutical properties. Evaluation of this analogue in cellular and in vivo models confirmed functional selectivity for modulation of a JAK3/JAK1-dependent IL-2 stimulated pathway over a JAK1/JAK2/Tyk2-dependent IL-6 stimulated pathway.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Cyclopropanes/chemical synthesis , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 3/antagonists & inhibitors , Pyrazines/chemical synthesis , Pyrroles/chemical synthesis , Administration, Oral , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Caco-2 Cells , Crystallography, X-Ray , Cyclopropanes/pharmacokinetics , Cyclopropanes/pharmacology , Gene Knockdown Techniques , High-Throughput Screening Assays , Humans , Interleukin-2/physiology , Janus Kinase 1/genetics , Janus Kinase 1/metabolism , Janus Kinase 3/genetics , Janus Kinase 3/metabolism , Mice , Models, Molecular , Pyrazines/pharmacokinetics , Pyrazines/pharmacology , Pyrroles/pharmacokinetics , Pyrroles/pharmacology , RNA, Small Interfering/genetics , Rats , Receptors, Interleukin-6/physiology , Signal Transduction/drug effects , Structure-Activity Relationship , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
7.
Antimicrob Agents Chemother ; 56(6): 3144-56, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22470110

ABSTRACT

This analysis was conducted to determine whether the hepatitis C virus (HCV) viral kinetics (VK) model can predict viral load (VL) decreases for nonnucleoside polymerase inhibitors (NNPolIs) and protease inhibitors (PIs) after 3-day monotherapy studies of patients infected with genotype 1 chronic HCV. This analysis includes data for 8 NNPolIs and 14 PIs, including VL decreases from 3-day monotherapy, total plasma trough concentrations on day 3 (C(min)), replicon data (50% effective concentration [EC(50)] and protein-shifted EC(50) [EC(50,PS)]), and for PIs, liver-to-plasma ratios (LPRs) measured in vivo in preclinical species. VK model simulations suggested that achieving additional log(10) VL decreases greater than one required 10-fold increases in the C(min). NNPolI and PI data further supported this result. The VK model was successfully used to predict VL decreases in 3-day monotherapy for NNPolIs based on the EC(50,PS) and the day 3 C(min). For PIs, however, predicting VL decreases using the same model and the EC(50,PS) and day 3 C(min) was not successful; a model including LPR values and the EC(50) instead of the EC(50,PS) provided a better prediction of VL decrease. These results are useful for designing phase 1 monotherapy studies for NNPolIs and PIs by clarifying factors driving VL decreases, such as the day 3 C(min) and the EC(50,PS) for NNPolIs or the EC(50) and LPR for PIs. This work provides a framework for understanding the pharmacokinetic/pharmacodynamic relationship for other HCV drug classes. The availability of mechanistic data on processes driving the target concentration, such as liver uptake transporters, should help to improve the predictive power of the approach.


Subject(s)
Antiviral Agents/pharmacokinetics , Hepacivirus/drug effects , Protease Inhibitors/pharmacokinetics , Antiviral Agents/pharmacology , Humans , Models, Theoretical , Protease Inhibitors/pharmacology
8.
Bioinformatics ; 26(4): 574-5, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-20080504

ABSTRACT

SUMMARY: The performance of sequence database search methods is usually judged by receiver operating characteristic (ROC) analysis. The proper interpretation of the results obtained and a fair comparison across different methods critically depends on the properties of the data set used for such an analysis; in particular, each query must have the same number of true positives and true negatives. Here, we present a novel web service based on a dataset specifically designed for ROC analysis and the investigation of alignment quality. The data set is derived from a quantitative classification of protein structures (COPS), while analysis and results are presented through an intuitive web interface. The analysis provides details such as false positives per query, and visualization of the structural similarity between query and targets. Most importantly, results obtained for a specific alignment method are immediately related to those obtained for several popular standard sequence alignment methods.


Subject(s)
Databases, Protein , Protein Conformation , Proteins/chemistry , Sequence Alignment/methods , Sequence Analysis, Protein , Software
9.
Bioinformatics ; 24(19): 2172-6, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18697773

ABSTRACT

UNLABELLED: The accuracy of current signal peptide predictors is outstanding. The most successful predictors are based on neural networks and hidden Markov models, reaching a sensitivity of 99% and an accuracy of 95%. Here, we demonstrate that the popular BLASTP alignment tool can be tuned for signal peptide prediction reaching the same high level of prediction success. Alignment-based techniques provide additional benefits. In spite of high success rates signal peptide predictors yield false predictions. Simple sequences like polyvaline, for example, are predicted as signal peptides. The general architecture of learning systems makes it difficult to trace the cause of such problems. This kind of false predictions can be recognized or avoided altogether by using sequence comparison techniques. Based on these results we have implemented a public web service, called Signal-BLAST. Predictions returned by Signal-BLAST are transparent and easy to analyze. AVAILABILITY: Signal-BLAST is available online at http://sigpep.services.came.sbg.ac.at/signalblast.html.


Subject(s)
Protein Sorting Signals , Sequence Alignment , Sequence Analysis, Protein , Computational Biology/methods , Databases, Protein
10.
Toxicol Pathol ; 36(2): 256-64, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18413786

ABSTRACT

Gene expression was evaluated in the myocardium of male Wistar rats after a single subcutaneous administration of 0.5 mg of isoproterenol, a beta-adrenergic agonist that causes acute tachycardia with subsequent myocardial necrosis. Histology of the heart, clinical chemistry, and hematology were evaluated at 9 time points (0.5 hours to 14 days postinjection). Myocardial gene expression was evaluated at 4 time points (1 hour to 3 days). Contraction bands and loss of cross-striation were identified on phosphotungstic acid-hematoxylin-stained sections 0.5 hours postdosing. Plasma troponin I elevation was detected at 0.5 hours, peaked at 3 hours, and returned to baseline values at 3 days postdosing. Interleukin 6 (Il6) expression spiked at 1 to 3 hours and was followed by a short-lived, time-dependent dysregulation of its downstream targets. Concurrently and consistent with the kinetics of the histologic findings, many pathways indicative of necrosis/apoptosis (p38 mitogen-activated protein kinase [MAPK] signaling, NF-kappaB signaling) and adaptation to hypertension (PPAR signaling) were overrepresented at 3 hours. The 1-day and 3-day time points indicated an adaptive response, with down-regulation of the fatty acid metabolism pathway, up-regulation of the fetal gene program, and superimposed inflammation and repair at 3 days. These results suggest early involvement of Il6 in isoproterenol-induced myocardial necrosis and emphasize the value of early time points in transcriptomic studies.


Subject(s)
Adrenergic beta-Agonists/toxicity , Interleukin-6/genetics , Isoproterenol/toxicity , Myocardial Infarction/genetics , Up-Regulation/physiology , Animals , Disease Models, Animal , Gene Expression Profiling , Heart/drug effects , Injections, Subcutaneous , Interleukin-6/metabolism , Male , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardium/metabolism , Myocardium/pathology , Oligonucleotide Array Sequence Analysis , RNA, Messenger/metabolism , Rats , Rats, Wistar , Time Factors , Troponin I/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...