Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 295(9): 2804-2821, 2020 02 28.
Article in English | MEDLINE | ID: mdl-31964714

ABSTRACT

Animal cells express heparan sulfate proteoglycans that perform many important cellular functions by way of heparan sulfate-protein interactions. The identification of membrane heparan sulfate-binding proteins is challenging because of their low abundance and the need for extensive enrichment. Here, we report a proteomics workflow for the identification and characterization of membrane-anchored and extracellular proteins that bind heparan sulfate. The technique is based on limited proteolysis of live cells in the absence of denaturation and fixation, heparin-affinity chromatography, and high-resolution LC-MS/MS, and we designate it LPHAMS. Application of LPHAMS to U937 monocytic and primary murine and human endothelial cells identified 55 plasma membrane, extracellular matrix, and soluble secreted proteins, including many previously unidentified heparin-binding proteins. The method also facilitated the mapping of the heparin-binding domains, making it possible to predict the location of the heparin-binding site. To validate the discovery feature of LPHAMS, we characterized one of the newly-discovered heparin-binding proteins, C-type lectin 14a (CLEC14A), a member of the C-type lectin family that modulates angiogenesis. We found that the C-type lectin domain of CLEC14A binds one-to-one to heparin with nanomolar affinity, and using molecular modeling and mutagenesis, we mapped its heparin-binding site. CLEC14A physically interacted with other glycosaminoglycans, including endothelial heparan sulfate and chondroitin sulfate E, but not with neutral or sialylated oligosaccharides. The LPHAMS technique should be applicable to other cells and glycans and provides a way to expand the repertoire of glycan-binding proteins for further study.


Subject(s)
Cell Adhesion Molecules/metabolism , Endothelium/chemistry , Heparitin Sulfate/metabolism , Lectins, C-Type/metabolism , Membrane Proteins/metabolism , Proteomics/methods , Animals , Binding Sites , Cells, Cultured , Endothelium/cytology , Humans , Mice , Protein Binding , U937 Cells
2.
ACS Nano ; 9(2): 1936-44, 2015 Feb 24.
Article in English | MEDLINE | ID: mdl-25652208

ABSTRACT

Ultrascaled transistors based on single-walled carbon nanotubes are identified as one of the top candidates for future microprocessor chips as they provide significantly better device performance and scaling properties than conventional silicon technologies. From the perspective of the chip performance, the device variability is as important as the device performance for practical applications. This paper presents a systematic investigation on the origins and characteristics of the threshold voltage (VT) variability of scaled quasiballistic nanotube transistors. Analysis of experimental results from variable-temperature measurement as well as gate oxide thickness scaling studies shows that the random variation from fixed charges present on the oxide surface close to nanotubes dominates the VT variability of nanotube transistors. The VT variability of single-tube transistors has a figure of merit that is quantitatively comparable with that of current silicon devices; and it could be reduced with the adoption of improved device passivation schemes, which might be necessary for practical devices incorporating multiple nanotubes, whose area normalized VT variability becomes worse due to the synergic effects from the limited surface coverage of nanotubes and the nonlinearity of the device off-state leakage current, as predicted by the Monte Carlo simulation.

3.
Nat Nanotechnol ; 8(10): 748-54, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24077030

ABSTRACT

Epitaxial growth of SrTiO3 on silicon by molecular beam epitaxy has opened up the route to the integration of functional complex oxides on a silicon platform. Chief among them is ferroelectric functionality using perovskite oxides such as BaTiO3. However, it has remained a challenge to achieve ferroelectricity in epitaxial BaTiO3 films with a polarization pointing perpendicular to the silicon substrate without a conducting bottom electrode. Here, we demonstrate ferroelectricity in such stacks. Synchrotron X-ray diffraction and high-resolution scanning transmission electron microscopy reveal the presence of crystalline domains with the long axis of the tetragonal structure oriented perpendicular to the substrate. Using piezoforce microscopy, polar domains can be written and read and are reversibly switched with a phase change of 180°. Open, saturated hysteresis loops are recorded. Thus, ferroelectric switching of 8- to 40-nm-thick BaTiO3 films in metal-ferroelectric-semiconductor structures is realized, and field-effect devices using this epitaxial oxide stack can be envisaged.

4.
J Am Chem Soc ; 126(11): 3616-26, 2004 Mar 24.
Article in English | MEDLINE | ID: mdl-15025491

ABSTRACT

Alumina-supported vanadium particles were prepared under ultrahigh vacuum (UHV) conditions and characterized with respect to their structural and CO adsorption properties. As supporting oxide, we used a thin, well-ordered alumina film grown on NiAl(110). This allows the application of scanning tunneling microscopy (STM), infrared reflection-absorption spectroscopy (IRAS), and X-ray photoelectron spectroscopy (XPS) without charging effects. Vanadium evaporation under UHV conditions leads to the growth of nanometer-sized particles which strongly interact with the alumina support. At very low vanadium coverages, these particles are partially incorporated into the alumina film and get oxidized through the contact to alumina. Low-temperature CO adsorption in this coverage regime permits the preparation of isolated vanadium carbonyls, of which we have identified mono-, di-, and tricarbonyls of the V(CO)(y)() type. A charge-frequency relationship was set up which allows one to quantify the extent of charge transfer from vanadium to alumina. It turns out that this charge transfer depends on the V nucleation site.

5.
Langmuir ; 20(5): 1539-42, 2004 Mar 02.
Article in English | MEDLINE | ID: mdl-15801409

ABSTRACT

We present grazing-incidence Fourier transform infrared and AFM data of Au, Al, and Ti vapor-deposited onto self-assembled monolayers (SAMs) of conjugated mono- and dithiols. SAMs of 4,4'''-dimercapto-p-quaterphenyl, 4,4"-dimercapto-p-terphenyl, and 4,4'-dimercapto-p-biphenyl have reactive thiols at the SAM/vacuum interface that interact with vapor-deposited Au or Al atoms, preventing metal penetration. Conjugated monothiols lack such metal blocking groups, and metals (Au, Al) can penetrate into their SAMs. Vapor deposition of Ti onto conjugated mono- and dithiol SAMs and onto hexadecanethiol SAMs destroys the monolayers.

SELECTION OF CITATIONS
SEARCH DETAIL
...