Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 298(12): 102688, 2022 12.
Article in English | MEDLINE | ID: mdl-36370848

ABSTRACT

Parkinson's disease is a neurodegenerative movement disorder associated with the intracellular aggregation of α-synuclein (α-syn). Cytotoxicity is mainly associated with the oligomeric species (αSOs) formed at early stages in α-syn aggregation. Consequently, there is an intense focus on the discovery of novel inhibitors such as peptides to inhibit oligomer formation and toxicity. Here, using peptide arrays, we identified nine peptides with high specificity and affinity for αSOs. Of these, peptides p194, p235, and p249 diverted α-syn aggregation from fibrils to amorphous aggregates with reduced ß-structures and increased random coil content. However, they did not reduce αSO cytotoxicity and permeabilization of large anionic unilamellar vesicles. In parallel, we identified a non-self-aggregating peptide (p216), derived from the cell-penetrating peptide penetratin, which showed 12-fold higher binding affinity to αSOs than to α-syn monomers (Kdapp 2.7 and 31.2 µM, respectively). p216 reduced αSOs-induced large anionic unilamellar vesicle membrane permeability at 10-1 to 10-3 mg/ml by almost 100%, was not toxic to SH-SY5Y cells, and reduced αSOs cytotoxicity by about 20%. We conclude that p216 is a promising starting point from which to develop peptides targeting toxic αSOs in Parkinson's disease.


Subject(s)
Cell-Penetrating Peptides , Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Cell-Penetrating Peptides/isolation & purification , Cell-Penetrating Peptides/pharmacology , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Cell Line, Tumor
2.
J Biol Chem ; 295(37): 13031-13046, 2020 09 11.
Article in English | MEDLINE | ID: mdl-32719003

ABSTRACT

Bacterial functional amyloids are evolutionarily optimized to aggregate, so much so that the extreme robustness of functional amyloid makes it very difficult to examine their structure-function relationships in a detailed manner. Previous work has shown that functional amyloids are resistant to conventional chemical denaturants, but they dissolve in formic acid (FA) at high concentrations. However, systematic investigation requires a quantitative analysis of FA's ability to denature proteins. Amyloid formed by Pseudomonas sp. protein FapC provides an excellent model to investigate FA denaturation. It contains three imperfect repeats, and stepwise removal of these repeats slows fibrillation and increases fragmentation during aggregation. However, the link to stability is unclear. We first calibrated FA denaturation using three small, globular, and acid-resistant proteins. This revealed a linear relationship between the concentration of FA and the free energy of unfolding with a slope of mFA+pH (the combined contribution of FA and FA-induced lowering of pH), as well as a robust correlation between protein size and mFA+pH We then measured the solubilization of fibrils formed from different FapC variants with varying numbers of repeats as a function of the concentration of FA. This revealed a decline in the number of residues driving amyloid formation upon deleting at least two repeats. The midpoint of denaturation declined with the removal of repeats. Complete removal of all repeats led to fibrils that were solubilized at FA concentrations 2-3 orders of magnitude lower than the repeat-containing variants, showing that at least one repeat is required for the stability of functional amyloid.


Subject(s)
Amyloid/chemistry , Bacterial Proteins/chemistry , Formates/chemistry , Models, Chemical , Protein Denaturation , Pseudomonas/chemistry
3.
FEBS J ; 287(10): 2037-2054, 2020 05.
Article in English | MEDLINE | ID: mdl-31686426

ABSTRACT

While it is generally accepted that α-synuclein oligomers (αSOs) play an important role in neurodegeneration in Parkinson's disease, the basis for their cytotoxicity remains unclear. We have previously shown that docosahexaenoic acid (DHA) stabilizes αSOs against dissociation without compromising their ability to colocalize with glutamatergic synapses of primary hippocampal neurons, suggesting that they bind to synaptic proteins. Here, we develop a proteomic screen for putative αSO binding partners in rat primary neurons using DHA-stabilized human αSOs as a bait protein. The protocol involved co-immunoprecipitation in combination with a photoactivatable heterobifunctional sulfo-LC-SDA crosslinker which did not compromise neuronal binding and preserved the interaction between the αSOs-binding partners. We identify in total 29 proteins associated with DHA-αSO of which eleven are membrane proteins, including synaptobrevin-2B (VAMP-2B), the sodium-potassium pump (Na+ /K+ ATPase), the V-type ATPase, the voltage-dependent anion channel and calcium-/calmodulin-dependent protein kinase type II subunit gamma; only these five hits were also found in previous studies which used unmodified αSOs as bait. We also identified Rab-3A as a target with likely disease relevance. Three out of four selected hits were subsequently validated with dot-blot binding assays. In addition, likely binding sites on these ligands were identified by computational analysis, highlighting a diversity of possible interactions between αSOs and target proteins. These results constitute an important step in the search for disease-modifying treatments targeting toxic αSOs.


Subject(s)
Docosahexaenoic Acids/chemistry , Parkinson Disease/genetics , Proteomics , alpha-Synuclein/chemistry , Animals , Brain/metabolism , Brain/pathology , Hippocampus/drug effects , Hippocampus/ultrastructure , Humans , Nerve Degeneration/genetics , Neurons/chemistry , Neurons/drug effects , Parkinson Disease/pathology , Protein Binding/genetics , Proteome/genetics , Rats , Synapses/genetics , Synapses/ultrastructure , alpha-Synuclein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...