Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Environ Entomol ; 53(3): 472-479, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38493297

ABSTRACT

Duponchelia fovealis (Zeller) (Lepidoptera: Crambidae) is a polyphagous pest that feeds on a variety of ornamental and crop plants. At least 47 plant families have been identified as hosts for D. fovealis in literature based on empirical data and observations. This list is surely incomplete based on the broad feeding habits of D. fovealis. We sought to expand the list of known D. fovealis host plants and to identify species that may be less preferred or not fed upon by D. fovealis. We used laboratory feeding assays to measure D. fovealis consumption rate of leaf disks from 32 herbaceous plant species and 32 woody species grown outdoors throughout the Southeastern United States, and 24 tropical species typically grown as house plants. These plants were from 65 genera and 36 families. Between the 3 ornamental plant groups, we tested (herbaceous, woody, and tropical) that, after 24 h, plants in the tropical group were the least consumed by D. fovealis. After 24 h, the average proportion of leaf disks eaten by D. fovealis was 0.80 or higher for 5 herbaceous and 12 woody species. Proportions of leaf disks eaten varied at the family and genus level in many cases. Our research can improve integrated pest management of D. fovealis by informing growers that plants may be at more or less risk of infestation and damage by larvae.


Subject(s)
Larva , Moths , Animals , Larva/growth & development , Larva/physiology , Moths/physiology , Moths/growth & development , Herbivory , Plant Leaves
2.
Environ Entomol ; 51(6): 1094-1105, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36259264

ABSTRACT

Scale insects are frequently abundant on urban trees. Although scales can worsen tree condition, some tree species tolerate moderate scale densities. Scales are prey for many natural enemies. Therefore, scale-infested trees may conserve natural enemies in their canopies and in nearby plants. We examined if scale-infested oaks-Quercus phellos L.-hosted more natural enemies than scale-uninfested oaks-Q. acutissima Carruth. and Q. lyrata Walter in Raleigh, NC. USA. We also tested if natural enemies were more abundant in holly shrubs (Ilex spp.) planted below scale-infested compared to scale-uninfested oaks. We collected natural enemies from the canopies of both tree types and from holly shrubs planted below these trees. To determine if tree type affected the abundance of natural enemies that passively dispersed to shrubs, we created hanging cup traps to collect arthropods as they fell from trees. To determine if natural enemies became more abundant on shrubs below scale-infested compared to scale-uninfested trees over short time scales, we collected natural enemies from holly shrubs below each tree type at three to six-day intervals. Scale-infested trees hosted more natural enemies than scale-uninfested trees and shrubs below scale-infested trees hosted more natural enemies than shrubs under scale-uninfested trees. Natural enemy abundance in hanging cup traps did not differ by tree type; however, shrubs underneath scale-infested trees accumulated more natural enemies than shrubs under scale-uninfested trees in six to nine days. Tolerating moderate pest densities in urban trees may support natural enemy communities, and thus biological control services, in shrubs below them.


Subject(s)
Arthropods , Hemiptera , Quercus , Animals , Trees
3.
Insects ; 11(3)2020 Feb 25.
Article in English | MEDLINE | ID: mdl-32106554

ABSTRACT

Sleeper species are innocuous native or naturalized species that exhibit invasive characteristics and become pests in response to environmental change. Climate warming is expected to increase arthropod damage in forests, in part, by transforming innocuous herbivores into severe pests: awakening sleeper species. Urban areas are warmer than natural areas due to the urban heat island effect and so the trees and pests in cities already experience temperatures predicted to occur in 50-100 years. We posit that arthropod species that become pests of urban trees are those that benefit from warming and thus should be monitored as potential sleeper species in forests. We illustrate this with two case studies of scale insects that are important pests of urban trees in parts of the US. Melanaspis tenebricosa and Parthenolecanium quercifex are geographically native to the US but take on invasive characteristics such as higher survival and reproduction and become disconnected from natural enemies on urban trees due to the urban heat island effect. This allows them to reach high densities and damage their host trees. Parthenolecanium quercifex density increases up to 12 times on urban willow oaks with just 2 °C of warming due to higher survival and adaptation to warmer temperatures. The urban heat island effect also creates a phenological mismatch between P. quercifex and its parasitoid complex, and so egg production is higher. Melanaspis tenebricosa density can increase 300 times on urban red maples with 2.5 °C of warming. This too is due to direct effects of warmer temperatures on survival and fecundity but M. tenebricosa also benefits from the drought stress incurred by warmer urban trees. These effects combine to increase M. tenebricosa density in forests as well as on urban trees at latitudes higher than its native range. We illustrate how cities provide a unique opportunity to study the complex effects of warming on insect herbivores. Studying pestilent urban species could be a pragmatic approach for identifying and preparing for sleeper species.

4.
Environ Entomol ; 49(1): 104-114, 2020 02 17.
Article in English | MEDLINE | ID: mdl-31904081

ABSTRACT

An insect species' geographic distribution is probably delimited in part by physiological tolerances of environmental temperatures. Gloomy scale (Melanaspis tenebricosa (Comstock)) is a native insect herbivore in eastern U.S. forests. In eastern U.S. cities, where temperatures are warmer than nearby natural areas, M. tenebricosa is a primary pest of red maple (Acer rubrum L.; Sapindales: Sapindaceae) With warming, M. tenebricosa may spread to new cities or become pestilent in forests. To better understand current and future M. tenebricosa distribution boundaries, we examined M. tenebricosa thermal tolerance under laboratory conditions. We selected five hot and five cold experimental temperatures representative of locations in the known M. tenebricosa distribution. We built models to predict scale mortality based on duration of exposure to warm or cold experimental temperatures. We then used these models to estimate upper and lower lethal durations, i.e., temperature exposure durations that result in 50% mortality. We tested the thermal tolerance for M. tenebricosa populations from northern, mid, and southern locations of the species' known distribution. Scales were more heat and cold tolerant of temperatures representative of the midlatitudes of their distribution where their densities are the greatest. Moreover, the scale population from the northern distribution boundary could tolerate cold temperatures from the northern boundary for twice as long as the population collected near the southern boundary. Our results suggest that as the climate warms the M. tenebricosa distribution may expand poleward, but experience a contraction at its southern boundary.


Subject(s)
Acer , Hemiptera , Animals , Cities , Cold Temperature , Forests , Herbivory , United States
5.
Environ Entomol ; 48(5): 1113-1120, 2019 09 30.
Article in English | MEDLINE | ID: mdl-31504349

ABSTRACT

Pest abundance on urban trees often increases with surrounding impervious surface. Gloomy scale (Melanaspis tenebricosa Comstock; Hemiptera: Diaspididae), a pest of red maples (Acer rubrum L.; Sapindales: Sapindaceae) in the southeast United States, reaches injurious levels in cities and reduces tree condition. Here, we use a chronosequence field study in Raleigh, NC, to investigate patterns in gloomy scale densities over time from the nursery to 13 yr after tree planting, with a goal of informing more efficient management of gloomy scale on urban trees. We examine how impervious surfaces affect the progression of infestations and how infestations affect tree condition. We find that gloomy scale densities remain low on trees until at least seven seasons after tree planting, providing a key timepoint for starting scouting efforts. Scouting should focus on tree branches, not tree trunks. Scale density on tree branches increases with impervious surface across the entire studied tree age range and increases faster on individual trees that are planted in areas with high impervious surface cover. There is a lag between the onset of pest infestations and a decline in tree condition, indicating that gloomy scale management should begin prior to a visible decline in tree condition. Our results inform management of gloomy scale in cities.


Subject(s)
Acer , Hemiptera , Animals , Cities , Seasons , Trees
6.
PeerJ ; 7: e6531, 2019.
Article in English | MEDLINE | ID: mdl-30867988

ABSTRACT

Urban trees serve a critical conservation function by supporting arthropod and vertebrate communities but are often subject to arthropod pest infestations. Native trees are thought to support richer arthropod communities than exotic trees but may also be more susceptible to herbivorous pests. Exotic trees may be less susceptible to herbivores but provide less conservation value as a consequence. We tested the hypotheses that native species in Acer and Quercus would have more herbivorous pests than exotic congeners and different communities of arthropod natural enemies. The density of scale insects, common urban tree pests, was greatest on a native Acer and a native Quercus than exotic congeners in both years of our research (2012 and 2016) and sometimes reached damaging levels. However, differences in predator and parasitoid abundance, diversity, and communities were not consistent between native and exotic species in either genus and were generally similar. For example, in 2012 neither predator nor parasitoid abundance differed among native and exotic Acer congeners but in 2016 a native species, A. saccharum, had the least of both groups. A native, Q. phellos, had significantly more predators and parasitoids in 2012 than its native and exotic congeners but no differences in 2016. Parasitoid communities were significantly different among Acer species and Quercus species due in each case to greater abundance of a single family on one native tree species. These native and exotic tree species could help conserve arthropod natural enemies and achieve pest management goals.

7.
Sci Total Environ ; 658: 1523-1530, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30678010

ABSTRACT

Trees are important components of urban landscapes because of the ecosystem services they provide. However, the effects of urbanization, particularly high temperatures, can benefit chronic insect pests and threaten ecosystem services offered by urban trees. Urban forest fragments are an often-overlooked component of the greater urban forest which may help to mitigate the damaging effects of urbanization. Melanaspis tenebricosa (gloomy scale) is a common pest of Acer rubrum (red maple) that becomes more abundant because of the urban heat island effect. We conducted observational and manipulative field experiments to test the hypothesis that trees in urban forest fragments would be cooler than those in surrounding ornamental landscapes and would thus have fewer M. tenebricosa, particularly in a hot mid-latitude city. Trees in forest fragments were 1.3° cooler and had three orders of magnitude fewer M. tenebricosa than trees in ornamental landscapes in Raleigh, NC USA. However, there was no difference in M. tenebricosa density between forest and landscape trees in Newark, DE and Philadelphia, PA USA which are 3.95 degrees of latitude higher, and nearer to the northern range extent. Trees in landscapes and forest fragments did not differ in predawn water potential, a measure of water stress, but likely differed in soil composition and moisture. We used potted trees to control for these differences and found that M. tenebricosa density still increased three times more in landscapes than forests suggesting temperature and not tree stress is the dominant factor. Taken together our results indicate two things. First, that trees growing in urban forest fragments are buffered from a chronic urban tree pest due to lower temperatures. Second, that temperature-driven differences in M. tenebricosa density which we saw in Raleigh could predict future density of the pest in higher latitude cities as the climate warms.


Subject(s)
Acer/physiology , Forests , Global Warming , Hemiptera/physiology , Trees/physiology , Acer/growth & development , Animals , Cities , Climate Change , Food Chain , Herbivory , Hot Temperature , North Carolina , Population Dynamics , Trees/growth & development , Urbanization
8.
Curr Opin Insect Sci ; 29: 27-33, 2018 10.
Article in English | MEDLINE | ID: mdl-30551822

ABSTRACT

Urban areas, a rapidly expanding land cover type, are composed of a mix of impervious surfaces, ornamental plants, and remnant habitat, which alters abiotic conditions and affects arthropod community assemblages and trophic interactions. Importantly, these effects often reduce arthropod diversity and may increase, reduce, or not change individual species or trophic interactions, which affects human and environmental health. Despite the pace of urbanization, drivers and consequences of change in urban arthropod communities remains poorly understood. Here, we review recent findings that shed light on the effects of urbanization on plants and abiotic conditions that drive arthropod community composition and trophic interactions, with discussion of how these effects conflict with human values and can be mitigated for future urbanization.


Subject(s)
Arthropods/physiology , Biodiversity , Climate , Plant Physiological Phenomena , Animals , Cities , Climate Change
9.
Proc Biol Sci ; 285(1882)2018 07 04.
Article in English | MEDLINE | ID: mdl-30051830

ABSTRACT

Urbanization represents an unintentional global experiment that can provide insights into how species will respond and interact under future global change scenarios. Cities produce many conditions that are predicted to occur widely in the future, such as warmer temperatures, higher carbon dioxide (CO2) concentrations and exacerbated droughts. In using cities as surrogates for global change, it is challenging to disentangle climate variables-such as temperature-from co-occurring or confounding urban variables-such as impervious surface-and then to understand the interactive effects of multiple climate variables on both individual species and species interactions. However, such interactions are also difficult to replicate experimentally, and thus the challenges of cities are also their unique advantage. Here, we review insights gained from cities, with a focus on plants and arthropods, and how urban findings agree or disagree with experimental predictions and historical data. We discuss the types of hypotheses that can be best tested in cities, caveats to urban research and how to further validate cities as surrogates for global change. Lastly, we summarize how to achieve the goal of using urban species responses to predict broader regional- and ecosystem-level patterns in the future.


Subject(s)
Arthropods/physiology , Plant Physiological Phenomena , Adaptation, Biological , Animals , Cities , Climate Change , Urbanization
10.
J Econ Entomol ; 111(4): 1558-1568, 2018 08 03.
Article in English | MEDLINE | ID: mdl-29912368

ABSTRACT

We documented the species composition, seasonal ecology, and impacts of parasitoids and predators of Parthenolecanium corni (Bouché) and P. quercifex (Fitch) (Hemiptera: Coccidae) in the urban landscapes of Georgia, North Carolina, South Carolina, and Virginia, United States. Twenty-one parasitoid morphospecies and 12 predator species were collected through rearing, beat sheet, and sticky card trapping. Coccophagus lycimnia (Walker) (Hymenoptera: Aphelinidae) was the most abundant parasitoid species in South Carolina, North Carolina, and Virginia, whereas Metaphycus sp. 2 (Hymenoptera: Encyrtidae) was the most abundant species in Georgia. Parasitism rates ranged from 59 to 92% in the nymphal population and 27 to 84% in the adult population in South Carolina. Blastothrix sp. 1 (Hymenoptera: Encyrtidae), C. lycimnia, Encyrtus sp. 1 (Hymenoptera: Encyrtidae), Eunotus sp., and Pachyneuron sp. (both Hymenoptera: Pteromalidae) emerged from adult scale insects and significantly reduced the fecundity of parasitized scale insects. Coccophagus lycimnia was the only parasitoid species emerged from nymphs. Hyperaspis signata (Olivier) species group, Chilocorus stigma Say (both Coleoptera: Coccinellidae), and Chrysoperla rufilabris (Burmeister) (Neuroptera: Chrysopidae) were the most abundant predators in South Carolina. The majority of natural enemies (87% of parasitoids and 82% of predators) were active from late March to late August and from late April to late October, respectively.


Subject(s)
Hemiptera , Animals , Georgia , North Carolina , South Carolina , Virginia
11.
PLoS One ; 13(5): e0197866, 2018.
Article in English | MEDLINE | ID: mdl-29795659

ABSTRACT

Photosynthesis is a fundamental process that trees perform over fluctuating environmental conditions. This study of red maple (Acer rubrum L.) characterizes photosynthesis, stomatal conductance, and water use efficiency in planted cultivars relative to wildtype trees. Red maple is common in cities, yet there is little understanding of how physiological processes affect the long-term growth, condition, and ecosystem services provided by urban trees. In the first year of our study, we measured leaf-level gas exchange and performed short-term temperature curves on urban planted cultivars and on suburban and rural wildtype trees. In the second year, we compared urban planted cultivars and urban wildtype trees. In the first year, urban planted trees had higher maximum rates of photosynthesis and higher overall rates of photosynthesis and stomatal conductance throughout the summer, relative to suburban or rural wildtype trees. Urban planted trees again had higher maximum rates of photosynthesis in the second year. However, urban wildtype trees had higher water use efficiency as air temperatures increased and similar overall rates of photosynthesis, relative to cultivars, in mid and late summer. Our results show that physiological differences between cultivars and wildtype trees may relate to differences in their genetic background and their responses to local environmental conditions, contingent on the identity of the horticultural variety. Overall, our results suggest that wildtype trees should be considered for some urban locations, and our study is valuable in demonstrating how site type and tree type can inform tree planting strategies and improve long-term urban forest sustainability.


Subject(s)
Acer/physiology , Photosynthesis , Plant Stomata/physiology , Trees/physiology , Agriculture , Cities , Environment , Seasons , Southeastern United States
12.
Ecol Appl ; 28(1): 225-236, 2018 01.
Article in English | MEDLINE | ID: mdl-29281147

ABSTRACT

The frequency and intensity of hurricanes are increasing globally, and anthropogenic modifications in cities have created systems that may be particularly vulnerable to their negative effects. Organisms living in cities are exposed to variable levels of chronic environmental stress. However, whether chronic stress ameliorates or exacerbates the negative effects of hurricanes remains an open question. Here, we consider two hypotheses about the simultaneous consequences of acute disturbances from hurricanes and chronic stress from urbanization for the structure of urban arthropod communities. The tipping point hypothesis posits that organisms living in high stress habitats are less resilient than those in low stress habitats because they are living near the limits of their environmental tolerances; while the disturbance tolerance hypothesis posits that high stress habitats host organisms pre-adapted for coping with disturbance, making them more resilient to the effects of storms. We used a before-after-control-impact design in the street medians and city parks of Manhattan (New York City, New York, USA) to compare arthropod communities before and after Super Storm Sandy in sites that were flooded and unflooded during the storm. Our evidence supported the disturbance tolerance hypothesis. Significant compositional differences between street medians and city parks before the storm disappeared after the storm; similarly, unflooded city parks had significantly different arthropod composition while flooded sites were indistinguishable. These differences were driven by reduced occurrences and abundances of arthropods in city parks. Finally, those arthropod groups that were most tolerant to urban stress were also the most tolerant to flooding. Our results suggest that the species that survive in high stress environments are likely to be the ones that thrive in response to acute disturbance. As storms become increasingly common and extreme, this juxtaposition in responses to storm-associated disturbance may lead to diversity loss in cities, potentially leading entire urban landscapes to mirror the reduced diversity of street medians.


Subject(s)
Arthropods , Biodiversity , Cyclonic Storms , Parks, Recreational , Urbanization , Animals , New York City , Stress, Physiological
13.
Environ Entomol ; 46(6): 1390-1396, 2017 12 08.
Article in English | MEDLINE | ID: mdl-29069311

ABSTRACT

Exotic ambrosia beetles, particularly Xylosandrus crassiusculus (Motschulsky) (Coleoptera: Curculionidae: Scolytinae) and Xylosandrus germanus (Blandford) (Coleoptera: Curculionidae: Scolytinae), are among the most damaging pests of ornamental trees in nurseries. Growers have had few tactics besides insecticide applications to reduce ambrosia beetle attacks but recent research has shown that attacks may be reduced by maintaining media moisture below a 50% threshold thereby reducing flood stress. We compared the efficacy of managing media moisture and insecticide applications for reducing ambrosia beetle attacks on three ornamental tree species in North Carolina. During trials in spring 2013 and 2015, flooded Cornus florida and Cornus kousa were heavily attacked despite sprays with permethrin, but nonflooded C. kousa or C. florida were not attacked. In spring 2015 trials, both nonflooded and flooded Styrax japonicus were heavily attacked regardless of permethrin applications. Although ethanol emissions were not measured, the apparently healthy nonflooded S. japonicus trees may have been exposed to an unknown physiological stress, such as low temperature injury, the previous winter, which predisposed them to beetle attack. However, ethanol levels within host tissues were not measured as part of the current study. X. crassiusculus (75%), Xyloborinus saxesenii Ratzburg (13%), and X. germanus (9%) were the most abundant species collected in ethanol baited traps deployed in 2015, while X. crassiusculus (63%) and X. germanus (36%) were the predominant species reared from attacked trees. Results indicate that managing media moisture levels at or below 50%, and maximizing tree health overall, may provide significant protection against Xylosandrus spp. attacks in flood intolerant tree species.


Subject(s)
Floods , Herbivory , Insect Control/methods , Insecticides , Trees/growth & development , Weevils/physiology , Animals , Cornus/growth & development , North Carolina , Population Dynamics , Species Specificity , Styrax/growth & development
14.
J Econ Entomol ; 110(4): 1668-1675, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28854655

ABSTRACT

This study was conducted to better understand the life history of Parthenolecanium corni (Bouché) and Parthenolecanium quercifex (Fitch) (Hemiptera: Coccidae), and to develop degree-day models for crawler emergence of the two soft scale species in Georgia, North Carolina, South Carolina, and Virginia. Both species were univoltine in the southeastern United States. In South Carolina, eggs hatched from mid-April to early June; second instars began to appear in September and migrated to twigs to overwinter in October; and third instars and adults appeared in mid-March to early April. Each parthenogenetic female produced on average 1,026 ± 52 eggs. Fecundity was positively correlated to the fresh weight, length, width, and height of gravid females. Gross reproductive rate (GRR) was 695.98 ± 79.34 ♀/♀, net reproductive rate (Rº) was 126.36 ± 19.03 ♀/♀, mean generation time (TG) was 52.61 ± 0.05 wk, intrinsic rate of increase (rm) was 0.04 ♀/♀/wk, and finite rate of increase (λ) was 1.04 times per week. Crawlers first occurred across Georgia, North Carolina, South Carolina, and Virginia in 2011-2013 when 524-596 Celsius-degree-days (DDC) had been accumulated with the single sine estimation method, or 411-479 DDC with the simple average method, at the base temperature of 12.8 °C and the start date of 1 January. These regional models accurately predicted the date of crawler emergence within 1 wk of the actual emergence in 2014.


Subject(s)
Hemiptera/physiology , Life History Traits , Animals , Body Size , Female , Fertility , Longevity , Models, Biological , Seasons , Southeastern United States , Species Specificity
15.
Biol Lett ; 13(6)2017 Jun.
Article in English | MEDLINE | ID: mdl-28637837

ABSTRACT

Changes in community composition are an important, but hard to predict, effect of climate change. Here, we use a wild-bee study system to test the ability of critical thermal maxima (CTmax, a measure of heat tolerance) to predict community responses to urban heat-island effects in Raleigh, NC, USA. Among 15 focal species, CTmax ranged from 44.6 to 51.3°C, and was strongly predictive of population responses to urban warming across 18 study sites (r2 = 0.44). Species with low CTmax declined the most. After phylogenetic correction, solitary species and cavity-nesting species (bumblebees) had the lowest CTmax, suggesting that these groups may be most sensitive to climate change. Community responses to urban and global warming will likely retain strong physiological signal, even after decades of warming during which time lags and interspecific interactions could modulate direct effects of temperature.


Subject(s)
Bees , Animals , Climate Change , Global Warming , Hot Temperature , Islands , Phylogeny
16.
PLoS One ; 12(3): e0173844, 2017.
Article in English | MEDLINE | ID: mdl-28278206

ABSTRACT

Urban habitats are characterized by impervious surfaces, which increase temperatures and reduce water availability to plants. The effects of these conditions on herbivorous insects are not well understood, but may provide insight into future conditions. Three primary hypotheses have been proposed to explain why multiple herbivorous arthropods are more abundant and damaging in cities, and support has been found for each. First, less complex vegetation may reduce biological control of pests. Second, plant stress can increase plant quality for pests. And third, urban warming can directly increase pest fitness and abundance. These hypotheses are not mutually exclusive, and the effects of temperature and plant stress are particularly related. Thus, we test the hypothesis that urban warming and drought stress combine to increase the fitness and abundance of the scale insect, Melanaspis tenebricosa, an urban tree pest that is more abundant in urban than rural areas of the southeastern U.S. We did this by manipulating drought stress across an existing mosaic of urban warming. We found support for the additive effect of temperature and drought stress such that female embryo production and body size increased with temperature and was greater on drought-stressed than watered trees. This study provides further evidence that drivers of pest insect outbreaks act in concert, rather than independently, and calls for more research that manipulates multiple abiotic factors related to urbanization and climate change to predict their effects on ecological interactions. As cities expand and the climate changes, warmer temperatures and drought conditions may become more widespread in the native range of this pest. These changes have direct physiological benefits for M. tenebricosa, and potentially other pests, that may increase their fitness and abundance in urban and natural forests.


Subject(s)
Droughts , Hemiptera/physiology , Herbivory/physiology , Host-Parasite Interactions , Trees/parasitology , Urbanization , Animals , Climate , Climate Change , Southeastern United States , Trees/growth & development
17.
Glob Chang Biol ; 23(4): 1436-1447, 2017 04.
Article in English | MEDLINE | ID: mdl-27809387

ABSTRACT

Biological effects of climate change are expected to vary geographically, with a strong signature of latitude. For ectothermic animals, there is systematic latitudinal variation in the relationship between climate and thermal performance curves, which describe the relationship between temperature and an organism's fitness. Here, we ask whether these documented latitudinal patterns can be generalized to predict arthropod responses to warming across mid- and high temperate latitudes, for taxa whose thermal physiology has not been measured. To address this question, we used a novel natural experiment consisting of a series of urban warming gradients at different latitudes. Specifically, we sampled arthropods from a single common street tree species across temperature gradients in four US cities, located from 35.8 to 42.4° latitude. We captured 6746 arthropods in 34 families from 111 sites that varied in summer average temperature by 1.7-3.4 °C within each city. Arthropod responses to warming within each city were characterized as Poisson regression coefficients describing change in abundance per °C for each family. Family responses in the two midlatitude cities were heterogeneous, including significantly negative and positive effects, while those in high-latitude cities varied no more than expected by chance within each city. We expected high-latitude taxa to increase in abundance with warming, and they did so in one of the two high-latitude cities; in the other, Queens (New York City), most taxa declined with warming, perhaps due to habitat loss that was correlated with warming in this city. With the exception of Queens, patterns of family responses to warming were consistent with predictions based on known latitudinal patterns in arthropod physiology relative to regional climate. Heterogeneous responses in midlatitudes may be ecologically disruptive if interacting taxa respond oppositely to warming.


Subject(s)
Arthropods , Climate Change , Hot Temperature , Animals , Cities , Islands , New York City , Population Dynamics , Temperature
18.
Proc Biol Sci ; 283(1840)2016 10 12.
Article in English | MEDLINE | ID: mdl-27708149

ABSTRACT

A substantial amount of global carbon is stored in mature trees. However, no experiments to date test how warming affects mature tree carbon storage. Using a unique, citywide, factorial experiment, we investigated how warming and insect herbivory affected physiological function and carbon sequestration (carbon stored per year) of mature trees. Urban warming increased herbivorous arthropod abundance on trees, but these herbivores had negligible effects on tree carbon sequestration. Instead, urban warming was associated with an estimated 12% loss of carbon sequestration, in part because photosynthesis was reduced at hotter sites. Ecosystem service assessments that do not consider urban conditions may overestimate urban tree carbon storage. Because urban and global warming are becoming more intense, our results suggest that urban trees will sequester even less carbon in the future.


Subject(s)
Carbon Sequestration , Cities , Temperature , Trees/physiology , Animals , Carbon , Ecosystem , Herbivory , Insecta
19.
Insects ; 7(3)2016 Aug 18.
Article in English | MEDLINE | ID: mdl-27548230

ABSTRACT

Ambrosia beetles tunnel into the heartwood of trees where they cultivate and feed upon a symbiotic fungus. We assessed the effectiveness of flood stress for making Cercis canadensis L. and Cornus florida L. trees attractive to attack as part of insecticide and fungicide efficacy trials conducted in Ohio and Virginia. Since female ambrosia beetles will not begin ovipositing until their symbiotic fungus is established within the host, we also assessed pre-treatment of trees with permethrin, azoxystrobin, and potassium phosphite on fungal establishment and beetle colonization success. Permethrin reduced attacks on flooded trees, yet no attacks occurred on any of the non-flooded trees. Fewer galleries created within flooded trees pre-treated with permethrin, azoxystrobin, and potassium phosphite contained the purported symbiotic fungus; foundress' eggs were only detected in flooded but untreated trees. While pre-treatment with permethrin, azoxystrobin, and potassium phosphite can disrupt colonization success, maintaining tree health continues to be the most effective and sustainable management strategy.

20.
Environ Entomol ; 45(4): 1040-8, 2016 08.
Article in English | MEDLINE | ID: mdl-27412195

ABSTRACT

Exotic ambrosia beetles are among the most damaging pests of trees grown in nurseries. The primary pests Xylosandrus crassiusculus Motschulsky and Xylosandrus germanus Blandford use ethanol to locate vulnerable trees. Research, primarily with X. germanus, has shown that flood-stressed trees emit ethanol and are preferentially attacked by ambrosia beetles. Our goal was to develop a media (also called potting soil) moisture threshold as an integrated pest management (IPM) tactic and assess grower practices that lead to ambrosia beetle attacks. Flooded Cornus florida L., Cornus kousa Burg., and Magnolia grandiflora L. trees incurred more attacks than unflooded trees that were not attacked. To determine optimal media moisture levels, we grew flood-tolerant Acer rubrum L. and flood-intolerant C. florida in containers with 10, 30, 50, 70, or 90% media moisture. No flooded or unflooded A. rubrum were attacked. However, C. florida grown in 70 or 90% moisture were attacked and died, whereas trees at 30 and 50% moisture were not attacked. Thus, we suggest an upper moisture threshold of 50% when growing C. florida and other flood-intolerant trees. However, during peak ambrosia beetle flight activity in spring 2013 and 2014, we found that media moisture levels in commercial nurseries were often between 50 and 90%. Implementing a media moisture threshold, as a new IPM tool, could reduce ambrosia beetle attacks and the need for insecticide applications, which is currently the only available management tactic. Future research should focus on how changes in substrates, irrigation, and other practices could help growers meet this threshold.


Subject(s)
Floods , Forestry/methods , Herbivory , Trees/physiology , Weevils/physiology , Acer/growth & development , Acer/physiology , Animals , Cornus/growth & development , Cornus/physiology , Ethanol/metabolism , Magnolia/growth & development , Magnolia/physiology , North Carolina , Random Allocation , Trees/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...