Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 10(7): e2206412, 2023 03.
Article in English | MEDLINE | ID: mdl-36581490

ABSTRACT

While autoregulative adaptation is a common feature of living tissues, only a few feedback-controlled adaptive biomaterials are available so far. This paper herein reports a new polymer hydrogel platform designed to release anti-inflammatory molecules in response to the inflammatory activation of human blood. In this system, anti-inflammatory peptide drugs, targeting either the complement cascade, a complement receptor, or cyclophilin A, are conjugated to the hydrogel by a peptide sequence that is cleaved by elastase released from activated granulocytes. As a proof of concept, the adaptive drug delivery from the gel triggered by activated granulocytes and the effect of the released drug on the respective inflammatory pathways are demonstrated. Adjusting the gel functionalization degree is shown to allow for tuning the drug release profiles to effective doses within a micromolar range. Feedback-controlled delivery of covalently conjugated drugs from a hydrogel matrix is concluded to provide valuable safety features suitable to equip medical devices with highly active anti-inflammatory agents without suppressing the general immunosurveillance.


Subject(s)
Drug Delivery Systems , Hydrogels , Humans , Hydrogels/chemistry , Peptides/chemistry , Anti-Inflammatory Agents , Inflammation
2.
Plant Physiol ; 191(1): 161-176, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36259930

ABSTRACT

In Nicotiana benthamiana, the expression of the Xanthomonas effector XANTHOMONAS OUTER PROTEIN Q (XopQ) triggers RECOGNITION OF XOPQ1 (ROQ1)-dependent effector-triggered immunity (ETI) responses accompanied by the accumulation of plastids around the nucleus and the formation of stromules. Both plastid clustering and stromules were proposed to contribute to ETI-related hypersensitive cell death and thereby to plant immunity. Whether these reactions are directly connected to ETI signaling events has not been tested. Here, we utilized transient expression experiments to determine whether XopQ-triggered plastid reactions are a result of XopQ perception by the immune receptor ROQ1 or a consequence of XopQ virulence activity. We found that N. benthamiana mutants lacking ROQ1, ENHANCED DISEASE SUSCEPTIBILITY 1, or the helper NUCLEOTIDE-BINDING LEUCINE-RICH REPEAT IMMUNE RECEPTORS (NLRs) N-REQUIRED GENE 1 (NRG1) and ACTIVATED DISEASE RESISTANCE GENE 1 (ADR1), fail to elicit XopQ-dependent host cell death and stromule formation. Mutants lacking only NRG1 lost XopQ-dependent cell death but retained some stromule induction that was abolished in the nrg1_adr1 double mutant. This analysis aligns XopQ-triggered stromules with the ETI signaling cascade but not to host programmed cell death. Furthermore, data reveal that XopQ-triggered plastid clustering is not strictly linked to stromule formation during ETI. Our data suggest that stromule formation, in contrast to chloroplast perinuclear dynamics, is an integral part of the N. benthamiana ETI response and that both NRG1 and ADR1 hNLRs play a role in this ETI response.


Subject(s)
Xanthomonas , Xanthomonas/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Proteins/metabolism , Plastids , Chloroplasts , Plant Immunity/genetics , Plant Diseases/genetics
3.
J Pept Sci ; 20(2): 128-36, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24357225

ABSTRACT

Although proteases are capable of synthesizing peptide bonds via the reverse of proteolysis, they are not proficient at peptide fragment ligation. Further manipulations are needed to shift the native enzyme activity from the cleavage to the synthesis of peptides especially when longer peptides or even proteins are the target molecules of the reaction. This account reports on the synthetic potential of trypsin variants with engineered oxyanion holes mutated by proline mutations, which were designed to minimize proteolytic side reactions during peptide bond synthesis. From the six single and double proline-mutated trypsins, in particular, trypsinQ192P came out as the most promising biocatalyst enabling not only the ligation of cleavage-sensitive peptide fragments but also the selective N-terminal modification of a real protein substrate.


Subject(s)
Protein Engineering , Trypsin/chemistry , Chromatography, High Pressure Liquid , Electrophoresis, Polyacrylamide Gel , Proteolysis , Trypsin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...